INTRODUCTION

Charlotte-Mecklenburg Storm Water Services; hereafter referred to as “CMSWS”, implements a proactive Pilot Stormwater Control Measure program. The purpose of the program is to evaluate various types of structural stormwater control measures (SCMs) within different land uses to determine their best use and effectiveness within Charlotte-Mecklenburg’s overall stormwater management program. Specifically, the program strives to determine the cost benefit and acceptability of various SCMs for potential inclusion in the Charlotte-Mecklenburg BMP Design manual by evaluating:

- capital cost of SCMs
- operation and maintenance requirements and costs for SCMs
- pollutant removal efficiency of SCMs
- stormwater quantity control capabilities of various SCMs

Where possible, CMSWS utilizes information gained under the pilot program to support water quality management efforts and the development and refinement of local SCM standards for land development projects.

CMSWS seeks opportunities to evaluate pilot SCMs within public or private projects in cases where such opportunities support the goals of the program. While most evaluations are conducted within public projects, opportunities may also be available within private projects on a case-by-case basis and as allowed by the Charlotte-Mecklenburg BMP Design manual. Pilot SCM evaluations conducted within private projects will be developed through contractual agreement with private developers who, in most cases, are required to meet stormwater treatment requirements in the City of Charlotte and/or Mecklenburg County - Post Construction Stormwater Ordinance (PCSO).

During 2004, CMSWS developed a stream restoration and SCM retrofit project in the Westfield neighborhood in the lower Little Sugar Creek watershed. The project was conducted in a flood plain buy-out area and involved the restoration of several feet of stream. As part of the project, two wetland areas and a level spreader were constructed to treat stormwater runoff from the adjacent neighborhoods. The project included walking trails for the neighborhood to use the site as an amenity and educational resource. This report focuses on the Brandywine wetland portion of the project.

PROJECT DESIGN

The project design called for the installation of a 0.47 acre wetland to treat stormwater runoff from the existing 39 acre watershed area draining to the site. The wetland was located immediately adjacent to Little Sugar creek for the purpose of treating the runoff just prior to entering the stream. The wetland design included a fore bay, two wetland cells in series, high and low marsh zones, and a micro pool for final settling at the outlet riser structure. The riser structure included a drawdown orifice to provide a detention component to the SCM.
PROJECT CONSTRUCTION

The project began construction during 2004 following the design parameters discussed in the previous section. This included excavation of the wetland cells and fore bay; construction of the high and low marsh areas and micro pool; installation of the riser structure; followed by installation of the wetland plantings. Construction of the project was completed in 2005.

Figures 1 – 4 show various stages of the construction as discussed in this section.

![Figure 1: Site prior to construction](image1)
![Figure 2: Wetland excavation](image2)

![Figure 3: Wetland grading](image3)
![Figure 4: Wetland plantings](image4)

PROJECT MONITORING

Monitoring for the project consisted of conducting full-storm hydrograph flow-weighted composite sampling of the stormwater runoff generated from the contributing watershed upstream of the SCM. The monitoring was conducted at the influent and effluent monitoring stations specified for the project. Monitoring stations were equipped with Teledyne ISCO Avalanche Model 6712 refrigerated auto-sampling equipment and ISCO Model 720 bubbler flow measurement equipment to conduct the monitoring. In-line weirs were placed at the monitoring...
stations as a primary device to facilitate flow measurement in conjunction with the ISCO Model 720 bubbler flow meter.

Composite samples were collected over the period from January 2006 to May 2008 and yielded a range of 8 - 14 paired storm event samples suitable for individual parameter statistical analysis. Laboratory sample analysis was conducted for the parameters shown in Figure 7 with each sample result yielding an Event Mean Concentration (EMC) for each parameter at each monitoring location. Monitoring and subsequent statistical analysis was based on guidance provided by the EPA and ASCE in the 2002 and 2009 publications, *Urban Stormwater Performance Monitoring*. Figures 5 – 6 show typical monitoring equipment utilized for the project. Appendices B, C, and D discuss the Pilot SCM program monitoring protocols and operating procedures. Appendix F discusses the Charlotte-Mecklenburg monitoring program QAPP.

Figure 5: Outlet riser and monitoring box pad
Figure 6: Automated monitoring equipment

DATA ANALYSIS

As stated in the previous section, SCM project monitoring yielded data from 8 - 14 paired storm event samples suitable for individual parameter statistical analysis. This produced Event Mean Concentrations (EMCs) for each parameter analyzed for both the SCM influent and effluent monitoring points. The data were analyzed using non-parametric statistical methods that account for data below detection limits (Helsel, 2005). Specifically robust regression on order statistics were used to calculate summary statistics, including the median event mean concentrations used to calculate the percent concentration reduction or increase for each parameter. The modified sign test was used to test for significant differences between influent and effluent paired samples. For parameters where data analysis did not produce a statistically significant result, a value of zero percent (0%) reduction was assigned to the parameter as non-significant results are considered to be not statistically different from zero.

Figure 7 shows the parameters sampled and corresponding information including median event mean concentrations and statistically significant percent reductions and increases. Appendix E discusses the Pilot SCM program data analysis protocol.
The results of the data analysis for the wetland showed statistically significant event mean concentration reductions of the median values of various parameters, including E-Coli by 94.9%; Fecal Coliform by 94.5%; Total Phosphorus by 59.2%; Suspended Sediment Concentration (SSC) by 82.7%; TSS by 84.0%; Turbidity by 73.1%; Copper by 55.8%; and Zinc by 63.8%. The SCM showed excellent removal rates for sediment and turbidity and very good removal rates for phosphorus and metals. While there was some reduction noted in Total Nitrogen, the results were not statistically significant. The excellent removal rates shown for the SCM were likely due to its overall design. The SCM had a long linear design with a large fore bay followed by two wetland cells connected in series. This allowed for a long linear flow path for stormwater through the SCM with greatly increased settling and contact times with wetland vegetation.

While all parameter data collected and analyzed under the Pilot SCM Program is vital for water quality management efforts, one of the most important parameters for evaluating SCM performance is Total Suspended Solids (TSS) and the percent removal efficiency thereof. This is because the City and County’s NPDES MS4 Stormwater permit requires that SCMs (BMPs) be designed to achieve an average annual target removal efficiency of 85% for TSS and data evaluated under the Pilot SCM Program can assist in determining whether or not a particular SCM is approved for use within the Charlotte-Mecklenburg BMP manual, where applicable.

More study of the SCM project will likely be needed to determine long-term benefits and life expectancy of the project. Repeat monitoring efforts at the 5, 10, and 15 year points will likely be needed to accomplish these efforts, therefore the CMSWS will consider these efforts for additional monitoring and data analysis in future years to determine long-term performance of the project, maintenance requirements, and further refinement of cost benefit.
Appendix A shows the data analysis figures for the Brandywine wetland based on the SCM data analysis conducted under the CMSWS Pilot SCM program as discussed in this report.
REFERENCES

EPA and ASCE, 2002. *Urban Stormwater Performance Monitoring*

APPENDIX A

Data Analysis Figures

Probability Plot of E. coli

<table>
<thead>
<tr>
<th>Percent</th>
<th>E. coli (MPN/100mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>99</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0 5000 10000 15000 20000 25000</td>
</tr>
</tbody>
</table>
Probability Plot of FC

Probability Plot of NH4
Probability Plot of Nitrate/Nitrite

Probability Plot of TKN
Probability Plot of Cu

Probability Plot of Pb
Censored Boxplots

TKN (mg/L)

Site

DL = 0.25

Censored Boxplots

TP (mg/L)

Site

DL = 0.01
Censored Boxplots

Pb (ug/L)

DL = 5

Site

Influent2 Influent1 Effluent

Censored Boxplots

Zn (ug/L)

DL = 10

Site

Influent2 Influent1 Effluent
APPENDIX B

Pilot SCM General Monitoring Protocol

Original Edition prepared May 2003 by:
Jonathan Smith, PE, CPSWQ,
Dr. Bill Hunt, PE
and
Kris Bass, PE
Department of Biological and Agricultural Engineering

Prepared for:
City of Charlotte – Storm Water Services
Table of Contents

1. Introduction ... 22
2. Characteristics to Monitor ... 22
 a. What Storms to Monitor .. 22
 b. Physical Characteristics .. 23
 c. Chemical Analysis ... 24
3. Choosing Equipment ... 25
4. Selecting BMPs to Monitor ... 26
 a. Types of BMPs to Monitor ... 26
 b. Identifying Individual Sites ... 27
 i. Correctly Designed Stormwater BMPs ... 27
 ii. Identifying Sites for Suitability .. 27
5. Installing Structures and Equipment for Monitoring .. 28
 A. Structures .. 28
 B. Samplers and Sensors .. 28
6. Programming Monitoring Equipment .. 29
8. Data Analysis .. 30
9. Maintenance of Sites and Equipment .. 30
 A. BMP Maintenance .. 30
 B. Equipment Maintenance .. 30
10. References .. 31
Appendix 1 General Monitoring Protocol ... 33
Acknowledgments

The authors would like to thank the following persons and organizations for their assistance and support while producing this document.

Steve Jadlocki City of Charlotte-Stormwater Services
Ronald Eubanks Mecklenburg County-LUESA Water Quality
Richard Farmer Mecklenburg County-LUESA Water Quality

Updated March 2013 by Steve Jadlocki – City of Charlotte-Stormwater Services
1. Introduction

The purpose of this document is to provide the City of Charlotte with information necessary in order to quickly and easily develop and implement a monitoring system to assess the performance of Pilot Stormwater Control Measures (SCMs). The guidelines recommended here will allow the reader to collect data meeting the United States Environmental Protection Agency (US-EPA) national Stormwater BMP data base requirements. These requirements are discussed in more detail in “Urban Stormwater BMP Performance Monitoring” (EPA 2009). The reader is encouraged to refer to this guidance for more information.

Specifically these methodologies will be incorporated into the City’s Pilot SCM monitoring program. This program currently has the following goals:

- Determine overall removal efficiencies of Stormwater SCMs common to the Charlotte area, as well as new and/or innovative SCM types.
- Compare removal efficiencies among different SCMs.
- Determine seasonal effects on removal efficiencies of SCMs.
- Determine periodic maintenance needs of SCMs.
- Determine cost/benefit of SCMs
- Determine annual maintenance costs
- Provide SCM data, if warranted, to the National EPA database and other national, state, local or regional agencies for use in research and developing SCM design standards.

2. Characteristics to Monitor

a. What storms to monitor

Unfortunately, it is very difficult to design a monitoring system to collect stormwater runoff samples and data from all precipitation events. Larger storms often exceed the design capacity of SCMs and stormwater drainage systems making measurements difficult. Smaller storms produce relatively small amounts of runoff often resulting in sample volumes insufficient for complete chemical analysis. In addition, the high cost of chemical analysis strains budgets and laboratory personnel. It is important then to identify the storm size and frequency to warrant data collection.

The inability to accurately predict the precipitation depth of individual storms requires that each sampler be programmed to accommodate a range of storm sizes. Precipitation events larger than 2 inches occur only a few times annually in the piedmont region of North Carolina. As a result it is not advisable to design a sampling system to accommodate such events. Likewise, events of less than 0.1 inches of rainfall will typically produce very little or no runoff. It is not advised that
storms smaller than 0.1 inches be targeted for sampling. See Section 6 for more information on setting up samplers for the targeted storm size.

In order to statistically defend the results of a monitoring program a sufficient number of storms must be collected during the monitoring period. Ultimately, determining the number of samples to collect in order to satisfy statistical analysis will depend on the monitoring goals of the project. More information on selecting sample numbers to match monitoring goals can be found in *Development of Performance Measures* (EPA 1999). Collecting samples from at least 10 storms covering all four seasons in a year period will enable defending the goals and hypotheses discussed in Section 1. Samples should be collected at a minimum frequency of one per month in order to determine the effect of seasonal variations on pollutant removal performance. See Table 2.1 for recommendations on storm size, frequency and number of samples.

Table 2.1 Recommendations for storm size and frequency for monitoring

<table>
<thead>
<tr>
<th>Physical characteristic</th>
<th>Minimum recommended</th>
<th>Maximum recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm Size</td>
<td>0.1 inches</td>
<td>2 inches</td>
</tr>
<tr>
<td>Storm sampling frequency</td>
<td>1/ month</td>
<td>2/ month</td>
</tr>
<tr>
<td>Number of samples</td>
<td>10/ yr</td>
<td>20/ yr</td>
</tr>
<tr>
<td>Inter-Event Dry Period</td>
<td>6 hours</td>
<td>N/A</td>
</tr>
<tr>
<td>Antecedent Dry Period</td>
<td>24 hours</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The most basic information that can be collected from stormwater runoff is its physical characteristics. Such information as flow rate, volume, and temperature are important pieces of information when analyzing SCM performance. No other single parameter is more important to SCM performance analysis than continuously recorded flow rate. For SCMs with a storage/detention component inherent to their function it is preferred that flow be measured at both the inflow and outflow locations. For SCMs without any detention component inherent to their design it is possible to measure flow at only one sampling station to save on equipment costs. Structures and instrumentation necessary to monitor flow are discussed in later sections.

Any performance monitoring program should also include continuously monitored rainfall. For smaller sites such as most stormwater SCMs it is acceptable to use a single rain gage at one of the monitoring stations or even a nearby gauging station such as a USGS precipitation gage. For larger SCMs it may be necessary to use a multiple gauging locations sited within the watershed to accurately determine the net precipitation amount treated by the SCM.

In many portions of the US thermal pollution as a result of stormwater runoff is a very important issue. Relative to other parameters, temperature is very economical to measure and record. Where possible it is advised that temperature be measured and recorded at both the inflow and outflow points of the SCM.

Listed below are the physical parameters which should be measured and recorded at each sampling location:

Physical parameters to monitor include:
1. Flow rate
 - inflow station
 - outflow station (optional for non-detention SCM)
2. Rainfall
3. Temperature (continuous recording)
 - Inflow
 - Outflow
4. pH (optional)

Selection of chemical analysis to be completed on stormwater runoff can be a very challenging task. Specific analysis may be chosen to satisfy the following questions.

 o For what pollutants have TMDL’s been established within the watershed of interest?
 o What pollutants will the SCM potentially have an impact on?
 o What pollutants are regulated by state or regional regulations?

Listed below are the chemical analyses that are recommended for inclusion into this study.

Composite Samples:

- Total Suspended Solids
- Suspended Sediment Concentration
- Total Kjeldahl Nitrogen
- Nitrate-Nitrite Nitrogen
- Ammonia-Nitrogen
- Total Phosphorus
- Copper
- Chromium
- Lead
- Zinc
- Aluminum*

*Aluminum collected and analyzed for proprietary filter cartridge SCMs only

Grab Samples:

- Fecal Coliform Bacteria
- E-Coli Bacteria
- Enterococcus Bacteria

Additional pollutants may be included in the chemical analysis as a “suite” of pollutants (for instance a metals suite might include Cadmium, Magnesium as well as Iron) or additional pollutants may be analyzed in order to compare samples to other types of water quality data such as stream flow. Chemical analysis of water quality samples should be analyzed using methods
described in Methods for Determination of Metals and Inorganic Chemicals in Environmental Samples (USEPA 1996).

3. Choosing Equipment

Many instrumentation suppliers have responded to the need for equipment for monitoring stormwater runoff. The most common style of stormwater sampler consists of a peristaltic pump operated by a main sampler controller depositing samples in one or a combination of bottles within the sampler housing. The sampler controller may have in-situ physical or chemical monitoring capability built into it. If not, accessory equipment should allow for monitoring of the parameters discussed in the previous section. Samples collected by the sampler are usually deposited within the sampler housing body into either a single or multiple bottles of either glass or polypropylene. The selection of bottle type will primarily be dependent on the types of analysis to be conducted. The user should consult the standards and methods book for when polypropylene bottles will be acceptable.

For the City of Charlotte’s Pilot SCM monitoring program, ISCO Avalanche samplers will be used, which consist of a refrigerated single bottle system. Fig 3.1 shows a sampler in use at one of the monitoring sites. In addition to the sampler’s flow monitoring modules use a bubbler flow meter system to measure and record flow at each station. The model 730 bubblers should be used where a flume, weir or orifice is used as a primary device. This should be considered the preferred system of flow measurement as it results in typically more accurate readings and repairs to damaged bubbler tubes are very easy and economical. Model 750 area velocity meters can be used in areas where a defined flow channel exists such as a culvert or chute of known dimensions. Area velocity meters have the advantage of operating under submerged flow conditions (such as with a tail water) and are useful when a limited head loss is available. However they should not be considered as accurate as the bubbler type model 730 flow meters matched with an appropriate primary device. The user should consult the ISCO operating manuals for more information on selecting equipment to match individual sites.
4. Selecting SCMs to monitor

When choosing SCMs to monitor, it is important to keep in mind the reasons for monitoring in the first place. For a regional or municipal stormwater program such as the City of Charlotte, monitoring of SCMs might be necessary to determine types of practices to recommend to developers. It is not advisable to research SCMs that will not be easily accepted into local use. Table 3.1 lists the most common SCMs currently in use in the Piedmont area of North Carolina as well as others which might see additional use in the future.

Table 3.1 Structural Stormwater Control Measure usage and potential for monitoring

<table>
<thead>
<tr>
<th>Type</th>
<th>Current Use</th>
<th>Future Use</th>
<th>Recommended sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet pond</td>
<td>High</td>
<td>medium</td>
<td>5</td>
</tr>
<tr>
<td>Wet detention pond</td>
<td>High</td>
<td>medium</td>
<td>5</td>
</tr>
<tr>
<td>Wet detention pond with littoral Shelf</td>
<td>medium</td>
<td>high</td>
<td>5</td>
</tr>
<tr>
<td>Dry detention pond</td>
<td>medium</td>
<td>medium</td>
<td>5</td>
</tr>
<tr>
<td>Stormwater Wetland</td>
<td>medium</td>
<td>medium</td>
<td>10</td>
</tr>
<tr>
<td>Bioretention</td>
<td>low</td>
<td>high</td>
<td>10</td>
</tr>
<tr>
<td>Pervious pavements</td>
<td>very low</td>
<td>medium</td>
<td>5</td>
</tr>
<tr>
<td>Greenroofs</td>
<td>very low</td>
<td>medium</td>
<td>2</td>
</tr>
<tr>
<td>Sand filter</td>
<td>low</td>
<td>medium</td>
<td>3</td>
</tr>
<tr>
<td>Proprietary devices</td>
<td>low</td>
<td>unknown</td>
<td>20</td>
</tr>
</tbody>
</table>
i. Correctly designed stormwater SCMs

When choosing SCMs for monitoring one should be careful to identify not only SCM types that fit within the guidelines mentioned above, but also individual SCMs that have been designed and constructed according to the desired local, regional, or national design standard. The most common design guidelines used are those specified in the North Carolina Stormwater BMP Design Manual (NCDENR, 2012) as well as the Charlotte-Mecklenburg BMP Design manual. Some SCMs installed in North Carolina may be constructed according to the State of Maryland Stormwater Manual (MDE, 2000). One of the primary purposes of developing a monitoring program is to enable the comparison of specific SCMs to one another. Comparing two SCMs designed under different criteria will produce results that are hard to support or defend. In North Carolina, most detention SCMs are designed for the “first flush” event. In the Lower Piedmont this “first flush” event would currently constitute the runoff associated with 1 inch of rainfall.

ii. Identifying Sites for suitability

Many individual stormwater SCMs currently in use are either impossible or extremely difficult to monitor. The most common characteristic inhibiting monitoring is the existence of multiple inflow points requiring multiple sampling stations thereby driving up the cost and labor requirement. Additionally, it is important that a location at each sampling point be identified which will allow accurate monitoring of flow. However for many SCMs, such as bioretention, sheet flow at the inlet is a recommended design characteristic. It is still possible to monitor flow in such a case however a well-defined watershed must exist. Setting up a sampling system under such conditions is discussed further in Chapter 6. Fig 3.2 lists a number of criteria for determining if a site is a good candidate for monitoring.

Fig 3.2 Checklist for Individual site suitability for monitoring

☐ Does the site have a single inflow and outflow?
☐ Is it possible to collect a well-mixed sample at each sampling station?
☐ Is the flow path at the inflow and outflow well defined?
☐ If inflow is sheet flow, is watershed well defined and mostly impervious?
☐ Will inlet or outlet have a free flowing outfall during storm event?
☐ No backwater conditions are present that would affect proper flow measurement

If the answer to each of these questions is yes then the site may be a good candidate for stormwater monitoring. It is the author’s experience that less than 5% of all stormwater SCMs are good candidates for performance monitoring. As the reader gains experience in setting up monitoring systems, it will become easier to determine which sites are suitable.
5 Installing Structures and Equipment for Monitoring

Where possible, individual sites will be chosen in order to minimize retrofitting required to allow monitoring as discussed in section 4. However nearly all sites will require some efforts in order to accurately measure performance.

Weirs, flumes or orifices may need to be installed to allow the measurement of flow. Such devices should be designed to accommodate the full range of storm flows expected from monitoring events. For the Pilot Stormwater Monitoring Program, structures should be sized to allow measurement of flows up to the peak discharge from the 2-yr 24-hr storm. Additionally the structures should be built such that they do not cause damage to the SCMs when larger storm events occur Fig 5.1 shows a V-notch weir being used to measure runoff from a parking lot.

Fig 5.1 120 degree V-notch weir measuring flow from a parking lot.

The designer should keep in mind that sampler intakes will need to be placed in a well-mixed area that does not impair the measurement of flow. Also, measurement sensors will need to be placed where they will not become clogged with debris. Design features should allow the attachment of sensors and sampler intakes to the structure.

Table 5.1 lists the preferred placement of sensors and intakes for Weir and Orifice type structures. For information on setting up flumes correctly see ISCO (1978).

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Weir</th>
<th>Orifice</th>
<th>Culvert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>V- Notch</td>
<td>Circular</td>
<td>Circular</td>
</tr>
<tr>
<td></td>
<td>Cold Rolled Steel or 1/8” Aluminum</td>
<td>Stainless Steel,</td>
<td>Existing storm drainage system</td>
</tr>
<tr>
<td>Placement of</td>
<td>0.0-1.0” below invert</td>
<td>0.0-1.0” below invert</td>
<td>Invert of culvert</td>
</tr>
</tbody>
</table>

Table 5.1 Preferred structure and sensor placement
Sensor Location of Sensor
- At a distance of 4X maximum head expected if possible upstream of invert
- N/A
- N/A

Placement of Intake
- At invert
- At invert
- Invert of culvert or in center of plunge pool downstream

Location of Intake
- Upstream of outlet a minimum of 4X maximum expected head
- 2X Diameter of orifice upstream
- Downstream of Sensor

Samplers themselves should be installed as near to the sampling points as possible to reduce the amount and length of intake tubing and sensor cable required. For area-velocity cables, maximum cable length is 30 feet requiring that samplers be installed within that distance to the structure/measurement point. Likewise bubbler tubes should be limited to 30’ to reduce the effect of friction within the bubbler tube on water level readings. It is advisable that the sampler itself be installed at an elevation higher than the intake point to allow the intake tube to fully discharge after each sub-sample is collected. Ideally the sampler should be installed 5-25 feet above the intake point. If the sampler is installed at an elevation higher than 25 feet above the intake, the sampler pump will have difficulty drawing a sample.

Automatic tipping bucket rain gages such as ISCO model 674 should be installed in a location away from interference from overhanging trees or power lines. Care should be taken to ensure that the tipping mechanism is installed as close to horizontally level as possible. In most cases the rain gage can be installed adjacent to the sampler housing. It is recommended that a backup method of measuring rainfall be utilized such as a second tipping bucket system or a manual rain gage.

6. Programming Monitoring Equipment

In order to calculate Event Mean Concentration (EMC) values, each sampler station shall collect a flow-weighted composite sample. A flow-weighted sample is a sample of known volume that is collected each time a predetermined volume of flow passes by the sampling point. Flow values shall be measured and collected in the electronic memory of each sampler. It is advised that for most SCMs flow values should be logged at a frequency of every 5 minutes or less. The frequency of sample collection will depend on a number of factors including the sample size desired and SCM watershed characteristics. When beginning monitoring efforts at a site a user has two options for determining sampler program setting. A predictive model such as the NRCS CN method (USDA 1986) can be used to estimate the runoff volume associated with the desired storms. For small highly impervious watersheds of well-known dimensions it is more accurate to directly relate runoff to rainfall assuming some reduction due to initial abstraction. Another option is to install the samplers and monitor several storms to determine a rainfall-runoff response curve. Regardless of approach the user may be required to further adjust the sampler settings as monitoring efforts continue to satisfactorily collect the correct sample volume.
For sites identified for the Pilot SCM monitoring program, individual monitoring protocols should be developed detailing the sampler settings for each sampler station. These protocols are included in Section 11 of this document. In addition, information on how to set up and program samplers are included in the operational manuals for the samplers, and flow modules (ISCO 2001).

8. Data Analysis

As discussed in the introduction, one of the overall objectives of this project is to provide data that can be included into the USEPA National Stormwater BMP database, if applicable. In order to produce defensible data, statistical analysis of the collected data will need to be completed. There are several different statistical methods which may be used depending on the type of SCM, hypothesis of the test, and type of data available for analysis.

The Effluent Probability Method will most likely become a standard statistical method for use with the National Stormwater Database. Where possible this analysis will be completed for the data collected in this study. However there are other methods which may prove useful. For instance the Summation of Loads method may be used to estimate efficiencies and the Mean Concentration method may be used for some comparisons of SCM effectiveness.

Data analysis for all water quality analysis and flow monitoring data was completed initially by NCSU project personnel for the first 12 SCMs in the study. Upon completion of the study, technical reports were provided to the City of Charlotte detailing the results of the monitoring efforts. As of 2009, City and County staff has conducted all data analysis internally.

9. Maintenance of Sites and Equipment

Proper maintenance of stormwater SCMs is important to ensure proper operation and removal efficiency. When conducting monitoring at a site, proper maintenance becomes even more critical. Maintenance issues such as clogging around structures can impair sensor and intake operation. Monitoring equipment also has its own maintenance requirements.

Failure to conduct proper maintenance on a SCM may cause a reduction in pollutant removal efficiency over time or even structural damage to the SCM. Such changes make statistical analysis of data problematic. As part of this study, general maintenance guidelines will be developed for the SCM sites included in the study. When available, these guidelines should be consulted for specific instructions on site maintenance. Any maintenance conducted during the study period should be recorded in the in the sampling log book for each site. In general, the inlet and outlet structures should be cleared of any debris prior to each sampling event.

In order to keep monitoring equipment operating properly, regular maintenance should be performed. The following figures describe the maintenance to be performed for each type of equipment. More specific maintenance recommendations are discussed in the operational manuals for each type of sampler or sensor (ISCO, 2001), the user is encouraged to refer to these documents for more information.
The following maintenance items should be performed on ISCO Samplers prior to each sampling event.

1. Check that power supply is sufficient to power sampler thru sampling event
2. Remove debris collected around intake strainer
3. Inspect intake tubing for cuts or crimps, replace if necessary
4. Verify that desiccant indicator window in sampler controller is blue
5. Remove debris that has collected in rain gage if applicable

The following maintenance should be performed on ISCO Model 730 Bubble Module prior to each sampling event.

1. Inspect bubbler tube for damage or crimps, replace if necessary
2. Calibrate water level of bubbler sensor to ensure that it is within acceptable limits
3. Verify that bubbler pump is working and producing “bubbles”

The following maintenance should be performed on ISCO Model 750 Area Velocity Meter prior to each sampling event.

1. Inspect cable for nicks or cuts.
2. Verify that module is situated properly in bottom of culvert or flume.
3. Calibrate water level over module if possible.

10. References

ISCO. 2003 6712 Portable Sampler Instruction Manual. ISCO Inc. Lincoln NE

ISCO. 2003 730 Bubbler Module Instruction Manual. ISCO Inc. Lincoln NE

ISCO. 2003 750 Area-Velocity Module Instruction Manual. ISCO Inc. Lincoln NE

11. Appendices

Appendix 1
General Monitoring Protocol

Introduction

The protocols discussed here are for use by City of Charlotte and Mecklenburg County Water Quality personnel in setting up and operating the stormwater SCM monitoring program. The monitoring program is detailed in the parent document “Stormwater Control Measure (SCM) Monitoring Plan for the City of Charlotte”

Equipment Set-up

For the program, 1-2 events per month will be monitored at each site. As a result, equipment may be left on site between sampling events or transported to laboratory or storage areas between events for security purposes. Monitoring personnel should regularly check weather forecasts to determine when to plan for a monitoring event. When a precipitation event is expected, sampling equipment should be installed at the monitoring stations according to the individual site monitoring protocols provided. It is imperative that the sampling equipment be installed and started prior to the beginning of the storm event. Failure to measure and capture the initial stages of the storm hydrograph may cause the “first flush” to be missed.

The use of ISCO refrigerated single bottle samplers will be used in the study. Two different types of flow measurement modules will be used depending on the type of primary structure available for monitoring.

Programming

Each sampler station will be programmed to collect up to 96 individual aliquots during a storm event. Each aliquot will be 200 mL in volume. Where flow measurement is possible, each sampling aliquot will be triggered by a known volume of water passing the primary device. The volume of flow to trigger sample collection will vary by site depending on watershed size and characteristic.

Sample and data collection

Due to sample hold time requirements of some chemical analysis, it is important that monitoring personnel collect samples and transport them to the laboratory in a timely manner. For the analysis recommended in the study plan, samples should be delivered to the lab no more than 48 hours after sample collection by the automatic sampler if no refrigeration or cooling of samples is done. Additionally, samples should not be collected/retrieved from the sampler until the runoff hydrograph has ceased or flow has resumed to base flow levels. It may take a couple of sampling events for the monitoring personnel to get a good “feel” for how each SCM responds to storm
events. Until that time the progress of the sampling may need to be checked frequently. Inflow sampling may be completed just after cessation of the precipitation event while outflow samples may take 24-48 hours after rain has stopped to complete. As a result it may be convenient to collect the inflow samples then collect the outflow samples several hours or a couple of days later.

As described above, samples are collected in single bottle containers. Once the composited sample has been well mixed in the container, samples for analysis should be placed in the appropriate container as supplied by the analysis laboratory.

Chain of custody forms should be filled in accordance with CMU Laboratory requirements.

Collection of rainfall and flow data is not as time dependent as sample collection. However it is advised that data be transferred to the appropriate PC or storage media as soon as possible.

Data Transfer

Sample analysis results as well as flow and rainfall data will be QA/QC’d per standard operating procedure and entered into the water quality database (WQD).
APPENDIX C

STANDARD ADMINISTRATIVE PROCEDURE

Structural Best Management Practice (BMP) Monitoring

CR-MP (3), SWIM2 McDowell

<table>
<thead>
<tr>
<th>Mecklenburg County</th>
<th>Land Use and Environmental Services Agency</th>
<th>Water Quality Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jon Beller</td>
<td>Sr. Environmental Specialist</td>
<td>Project Officer</td>
</tr>
<tr>
<td>Jeff Price</td>
<td>Environmental Analyst</td>
<td>QA/QC Officer</td>
</tr>
<tr>
<td>Rusty Rozzelle</td>
<td>Water Quality Program Manager</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City of Charlotte</th>
<th>Engineering and Property Management</th>
<th>Storm Water Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steve Jadlocki</td>
<td>WQ Administrator</td>
<td></td>
</tr>
<tr>
<td>Daryl Hammock</td>
<td>Water Quality Program Manager</td>
<td></td>
</tr>
</tbody>
</table>

Charlotte-Mecklenburg Storm Water Services
Charlotte, NC
Standard Administrative Procedure
Modification / Review Log

<table>
<thead>
<tr>
<th>Version</th>
<th>Eff. Date</th>
<th>Author</th>
<th>Summary of Changes</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
<td>Jeff Price</td>
<td>Original Draft.</td>
<td>Jeff Price</td>
</tr>
<tr>
<td>1.1</td>
<td>8/13/07</td>
<td>Jeff Price</td>
<td>Formatting changes – minor.</td>
<td>Jeff Price</td>
</tr>
<tr>
<td>1.2</td>
<td>1/1/08</td>
<td>Jeff Price</td>
<td>Minor formatting changes, updates.</td>
<td>Jeff Price</td>
</tr>
<tr>
<td>1.3</td>
<td>4/1/09</td>
<td>Jeff Price</td>
<td>Minor formatting changes, updates.</td>
<td>Jeff Price</td>
</tr>
<tr>
<td>1.4</td>
<td>8/10/09</td>
<td>Jeff Price</td>
<td>Added Bacteriological sample collection utilizing automated samplers.</td>
<td>Jeff Price</td>
</tr>
<tr>
<td>1.5</td>
<td>9/2/09</td>
<td>Jon Beller</td>
<td>Updated site list, removed PSD sampling requirements.</td>
<td>Jeff Price</td>
</tr>
<tr>
<td>1.6</td>
<td>7/1/10</td>
<td>Jon Beller</td>
<td>Updated site list</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>7/1/11</td>
<td>Jon Beller</td>
<td>Updated site list, updates.</td>
<td></td>
</tr>
</tbody>
</table>
1.0 Purpose

1.1 To collect stormwater runoff data in support of the City of Charlotte’s Pilot BMP Study Program and Mecklenburg County Special project sites, including the North Mecklenburg Recycling Center and CMC Huntersville sites.

2.0 Applicability

2.1 This Standard Administrative Procedure (SAP) is applicable to all storm water runoff events collected from BMPs under the Charlotte-Mecklenburg - Water Quality Work Plan; Program Elements CR-MP (3), and SWIM Phase II McDowell.

3.0 Program Summary

3.1 Collect flow-weighted storm water composite samples from the influent(s) and effluent of each of the BMP sites identified in Attachment 10.1

3.2 The data end-user will utilize the sample results to calculate pollutant removal efficiencies for each BMP sampled.

4.0 Health and Safety Warnings

4.1 Always exercise caution and consider personal safety first. Surface water sampling poses a number of inherent risks, including steep and hazardous terrain negotiation, threatening weather conditions, deep and/or swift moving water, stinging insects and incidental contact with wild animals.

4.2 Always wear gloves and exercise universal precautions. Decontaminate hands frequently using a no-rinse hand sanitizer. Urban surface waters pose potential for pathogenic contamination.

4.3 Always exercise caution in handling the equipment. Automated samplers utilize 12-volt DC power sources and peristaltic pumps. Electrical and mechanical hazards are inherent in their maintenance and use.

4.4 Never lift or carry more than you can comfortably handle give site conditions. 12-volt batteries and 20-liter carboys full of sample water are very heavy.

5.0 Interferences

5.1 For pre-preserved sample collection bottles; overfilled, spilled or otherwise damaged containers should be discarded and a new sample should be collected. This reduces the risk of sample contamination and improper chemical preservation.
5.2 ISCO sample collection containers should be thoroughly mixed prior to pouring up individual sample collection bottles. This will ensure that representative samples are submitted for analysis.

5.3 Any observed equipment problems or any identified inconsistencies with Standard Operating Procedures during a sample event should be reported to the QA/QC Officer immediately. Issues identified in conflict with programmatic Data Quality Objectives may result in re-samples, additional samples, a scratched run or a scratched sample event.

6.0 Sample Collection Procedure

Preparation

6.1 Identify staff resources responsible for sample collection. Coordinate the sample event details with staff resources and the CMU lab as necessary.

6.2 For each site sampled, print the following:

6.2.1 Chain of Custody forms (Attachment 10.2)
6.2.2 BMP Event Data Sheet (Attachment 10.3)
6.2.3 Sample collection bottle labels (Attachment 10.4)

Note: Bottle labels require the use of special adhesive backed, waterproof label paper and a label printer. Otherwise, labels may be printed by hand utilizing

6.3 Assemble sets of the following sample collection bottles for each site; one set per sampler.

Note: *Bacteriological samples are not required at all sites, see Attachment 10.1.

6.3.1 1 x 1000ml (unpreserved) – TSS, Turbidity
6.3.2 1 x 500ml (HNO3) – Metals (Cr, Cu, Pb, Zn)
6.3.3 1 x 500ml (H2SO4) – Nutrients (N-NH3, NOX, TKN, TP)
6.3.4 3 x 100ml (sterile, NA2S2O3) – Bacteriological (Fecal Coliform, E Coli, Enterococcus)*
6.3.5 1 x 250ml (unpreserved) – SSC

6.4 Affix the self-adhesive labels to the appropriate sample collection bottles. Leave the Sample Collection Time blank. The sample collection time will be recorded from the automated monitoring equipment.

Sample Collection

6.5 At each sample site location; collect automated flow-weighted composite samples utilizing the Automated Surface Water Sample Collection procedure (Ref. 9.2).
Where required; collect bacteriological samples directly from the automated flow-weighted composite.

Create entry in Water Quality Database (WQD) stating what site was set-up and the date of set-up and sample collection.

When sample is collected, Monitoring Team Lead will enter event data into WQD for each site.

For failed events, staff will enter reason(s) event failed into WQD and forward to Monitoring Team Lead for review.

7.0 Performance / Acceptance Criteria

7.1
For each site, a complete sample event includes a flow weighted composite and in-stream instantaneous measurements for the following parameters, where appropriate.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter</th>
<th>Parameter</th>
<th>Parameter</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>F Coliform</td>
<td>TKN</td>
<td>*Chromium</td>
<td>Dissolved O2</td>
<td>*% Hydrograph</td>
</tr>
<tr>
<td>E Coli</td>
<td>*TP</td>
<td>*Copper</td>
<td>Sp. Conductivity</td>
<td>*Rainfall</td>
</tr>
<tr>
<td>Enterococcus</td>
<td>*TSS</td>
<td>*Lead</td>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>N-NH3</td>
<td>*TSS</td>
<td>*Zinc</td>
<td>*ISCO Flow</td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>*Turbidity</td>
<td>*Temp</td>
<td>*Event Duration</td>
<td></td>
</tr>
</tbody>
</table>

* Denotes critical parameters.

Samples must be analyzed by a NC State certified laboratory for each parameter identified in 7.1 in order to be considered complete.

If utilized, YSI multi-parameter sondes must be calibrated before use and checked-in after use. All calibration data must be recorded in the calibration log.

Samples should be collected only after a minimum of 72 hours dry weather. Samples should be submitted for analysis only if all key ISCO samplers functioned for the entire event, as defined by the percentage of storm event hydrograph collected. Samples must meet or exceed 70% of the hydrograph in order to be considered complete. For additional guidance regarding ISCO Bacteriological sample collection, see Attachment 10.5.

All data must be submitted to the QA/QC Officer.

8.0 Data and Records Management

All field data must be entered by staff into WQD. Data is reviewed by Monitoring Team Lead and submitted to the QA/QC Officer for final approval.
8.2 All lab data must be submitted to the QA/QC Officer in electronic format.

8.3 All completed COCs must be submitted to the QA/QC Officer.

8.4 Electronic transfer of analytical data from the Laboratory database to the WQDR will be administered by the QA/QC Officer.

8.5 Transfer of all collected field data (flow and instantaneous in-stream measurements) to the WQDR will be administered by the QA/QC Officer.

9.0 References

9.1 YSI SOP – YSI Multiprobe Calibration and Field Data Collection (Short-term Deployment).

9.2 ISCO SOP - Automated Surface Water Sample Collection.
10.0 Attachments

10.1 – Example Chain of Custody

<table>
<thead>
<tr>
<th>Sample Collection</th>
<th>Time</th>
<th>Date</th>
<th>Location Code</th>
<th>Staff ID</th>
<th>Sample Type</th>
<th>Sampling Time</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W. Influent</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>W. Influent</td>
<td>12/01/2021</td>
<td>Rainwater</td>
</tr>
<tr>
<td>W. Influent</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>W. Influent</td>
<td>12/01/2021</td>
<td>Stormwater</td>
</tr>
<tr>
<td>W. Influent</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>W. Influent</td>
<td>12/01/2021</td>
<td>Groundwater</td>
</tr>
<tr>
<td>W. Efluent</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>W. Efluent</td>
<td>12/01/2021</td>
<td>Surface Water</td>
</tr>
<tr>
<td>W. Efluent</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>W. Efluent</td>
<td>12/01/2021</td>
<td>Waste Water</td>
</tr>
<tr>
<td>W. Efluent</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>W. Efluent</td>
<td>12/01/2021</td>
<td>Effluent</td>
</tr>
</tbody>
</table>

Table 1: Example Chain of Custody

Notes:
- Chain of Custody is maintained for all samples.
- Samples are collected from various water sources.
- Date and time of sample collection are recorded.
- Samples are tagged with unique identifiers.

Example:
- Rainwater sample collected on 12/01/2021.
- Stormwater sample collected on 12/01/2021.
- Groundwater sample collected on 12/01/2021.
- Surface water sample collected on 12/01/2021.
- Waste water sample collected on 12/01/2021.
- Effluent sample collected on 12/01/2021.

Chain of Custody:
- Samples are tracked from collection to analysis.
- Each sample is assigned a unique identifier.
- Analysis results are compared against established thresholds.

Analysis:
- Analysis results for each sample type are recorded.
- Results are compared against established thresholds.
- Results are used to inform decision-making.

Conclusion:
- The chain of custody ensures accountability and traceability.
- Analysis results provide valuable insights into water quality.
- Results are used to make informed decisions.
BMP Pilot Monitoring CR-MP(3)

<table>
<thead>
<tr>
<th>Composite Sample Information</th>
<th>Sampling Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Rainfall</td>
<td></td>
</tr>
<tr>
<td>Total Rainfall Duration</td>
<td></td>
</tr>
<tr>
<td>Days Since Previous Rain Event</td>
<td></td>
</tr>
<tr>
<td>ISCO Event Duration</td>
<td></td>
</tr>
<tr>
<td>Aliquots Sampled</td>
<td></td>
</tr>
<tr>
<td>Sampler Pacing</td>
<td></td>
</tr>
<tr>
<td>Sampled Storm Volume</td>
<td></td>
</tr>
<tr>
<td>Total Discharge</td>
<td></td>
</tr>
<tr>
<td>Percent of Hydrograph</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grab Sample Information</th>
<th>Sampling Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
</tr>
<tr>
<td>Conductivity</td>
<td></td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td></td>
</tr>
<tr>
<td>% Dissolved Oxygen</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
</tbody>
</table>

Comments:
10.3 – BMP Example Sample Collection Bottle Label

<table>
<thead>
<tr>
<th>Mecklenburg County LUESA/WQP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BMP Monitoring</td>
<td></td>
</tr>
<tr>
<td>Sample ID: (W–Site Name)</td>
<td></td>
</tr>
<tr>
<td>Date: //**</td>
<td>Time: ________________________</td>
</tr>
<tr>
<td>Sample Type: Composite</td>
<td>Staff ID:</td>
</tr>
<tr>
<td>Preservative: (Preservative)</td>
<td>Bottle: (Vol) ml (type)</td>
</tr>
<tr>
<td>Tests: (Parameter)</td>
<td></td>
</tr>
</tbody>
</table>

10.4 – ISCO Bacteriological Sample Collection Guidance

The following guidelines must be met in order to collect valid Bacteriological samples:

1. At the time of collection, the composite sample must be comprised of ≥15 sample aliquots.

2. Bacteriological samples must be pulled from the composite sampler ≤24 hours from the time that the first sample aliquot is collected.

3. ISCO refrigeration unit must be functional and the sample must be cooled to ≤4°C at the time of bacteriological extraction.

4. Bacteriological samples must be extracted in the field and immediately placed in a cooler on ice, for direct transport to the CMU lab.
APPENDIX D

STANDARD OPERATING PROCEDURE

AUTOMATED SURFACE WATER SAMPLE COLLECTION

Mecklenburg County
Land Use and Environmental Services Agency
Water Quality Program

<table>
<thead>
<tr>
<th>Jon Beller</th>
<th>Sr. Environmental Specialist</th>
<th>Project Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeff Price</td>
<td>Environmental Analyst</td>
<td>QA/QC Officer</td>
</tr>
<tr>
<td>Rusty Rozzelle</td>
<td>Water Quality Program Manager</td>
<td></td>
</tr>
</tbody>
</table>

City of Charlotte
Engineering and Property Management
Storm Water Services

<table>
<thead>
<tr>
<th>Steve Jadlocki</th>
<th>WQ Administrator</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Daryl Hammock</td>
<td>Water Quality Program Manager</td>
<td></td>
</tr>
</tbody>
</table>

Charlotte-Mecklenburg Storm Water Services
Charlotte, NC
Standard Operating Procedure
Modification / Review Log

<table>
<thead>
<tr>
<th>Version</th>
<th>Eff. Date</th>
<th>Author</th>
<th>Summary of Changes</th>
<th>Approved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2/26/07</td>
<td>Jeff Price</td>
<td>Original Draft</td>
<td>Jeff Price</td>
</tr>
<tr>
<td>1.1</td>
<td>1/1/08</td>
<td>Jeff Price</td>
<td>Formatting changes – minor</td>
<td>Jeff Price</td>
</tr>
<tr>
<td>1.2</td>
<td>7/1/08</td>
<td>Jon Beller</td>
<td>Field Validation, minor formatting changes</td>
<td>Jeff Price</td>
</tr>
<tr>
<td>1.3</td>
<td>1/1/09</td>
<td>Jeff Price</td>
<td>Formatting changes – minor</td>
<td>Jeff Price</td>
</tr>
<tr>
<td>1.4</td>
<td>9/2/09</td>
<td>Jon Beller</td>
<td>New updates to account for ISCO Automated Fecal collection</td>
<td>Jeff Price</td>
</tr>
<tr>
<td>1.5</td>
<td>9/8/11</td>
<td>Jon Beller</td>
<td>New updates to account for addition of Water Quality Database</td>
<td>Jeff Price</td>
</tr>
</tbody>
</table>
1.0 Scope and Applicability

1.1 This SOP is applicable to the collection of flow-weighted composite surface water samples utilizing portable auto-samplers. Flow weighted auto-composite samples are suitable for both chemical and physical parameter analysis.

1.2 Automated samplers are not sterilized and therefore bacteriological samples collected in this manner are known to be in conflict with standard methods and commonly accepted protocols. However, bacteriological samples will be collected from full storm composites for research purposes. This data will be identified as special purpose data and utilized as such.

6.0 Summary of Method

3.1 Flow-weighted composite samples of surface water are collected from either free flowing streams or impounded water sources utilizing automated samplers.

3.2 Surface water sub-samples, or aliquots, are pumped from the source utilizing a peristaltic pump and a computer-controlled sampling “head”. The sample aliquots are drawn from the source in proportion to measured water flow (discharge in cf) so that the final composite sample represents the entire range of flow conditions, or hydrograph, observed at a site during a precipitation event.

3.3 The final composite sample is distributed among various certified clean, pre-preserved bottles suitable for relevant laboratory analysis. All samples are submitted to a NC State certified laboratory for the analysis and quantification of surface water pollutants.

6.0 Health and Safety Warnings

3.1 Caution should always be exercised and personal safety considerations must be considered paramount for field monitoring. Surface water sampling poses a number of inherent risks, including steep and hazardous terrain negotiation, deep and/or swift moving water, stinging insects and occasional contact with wild animals.

3.2 Always wear gloves when sampling and decontaminate hands frequently using a no-rinse hand sanitizer. Universal precautions should be exercised when exposed to urban surface waters with unknown potential for contamination.
3.3 Always exercise caution in handling the equipment. Automated samplers utilize 12-volt DC power sources and peristaltic pumps. Electrical and mechanical hazards are inherent in their maintenance and use.
3.4 Never lift or carry more than you can comfortably handle given site conditions. 12-volt batteries and 20-liter carboys full of sample water are very heavy.

4.0 Interferences

4.1 Improper sample pacing. Automated samplers are limited by the number of aliquots (of a given volume) that can be drawn before the sample carboy is filled. Improperly paced sampling equipment has potential to miss portions of a precipitation event.

4.2 Improperly cleaned (or contaminated) sampling equipment. Sample collection carboys must be cleaned and QC equipment blanks are used to verify equipment decontamination.

4.3 Cross-contamination of samples during transport. Always place filled samples collection bottles (samples) upright in the cooler so that the neck and cap are above the level of the ice. Drain ice melt-water from coolers periodically to ensure that sample bottles are not submerged.

4.4 Battery failure following sample collection. Failed refrigeration due to battery failure results in improperly preserved samples.

4.5 Vandalism of equipment. Sampling equipment is often placed near inhabited areas that have the potential to be damaged by vandalism.

5.0 Equipment and Supplies

5.1 The following equipment is generally needed for automated, flow-weighted composite surface water sample collection:

- ISCO 6712 Avalanche refrigerated auto-sampler
- ISCO 750 Area Velocity Flow Module or ISCO 730 Bubbler Flow Module
- Continuous Temperature Probe
- ISCO 674 Rain Gage
- ISCO 581 Rapid Transfer Device
- Cleaned 18.9-liter sample collection carboy
- 12-volt deep cycle battery
- Sampler collection tubing
- Stainless steel bubbler tubing
- Metal job box
- Chain
- Lock
- Anchor
- CMU Lab Chain of Custody Form (Attachment 13.1)
- CMU Sample Collection Bottle Selection Guidance Chart (Attachment 13.2)
- Certified clean, pre-preserved sample collection bottles appropriate for intended parameter analysis (provided by CMU)
- Sample bottle self-adhesive labels
- 4-liters of lab distilled/de-ionized reagent grade water
- CMU lab sterilized buffered bacteriological blank solution
- Sharpie, pen
- Map Book
- Gloves
- Hip waders, rubber boots
- Hand sanitizer

6.0 **Automated Sampling Site Set Up**

6.5 Identify a suitable site to locate the auto-sampler depending on objectives of the sampling program.

6.6 Set up metal job box near the stream or site to be sampled but far enough away to be out of the flow range during storm events.

6.7 Screw the trailer anchors into the ground near the job box and lock the job box to the anchor with the safety chain.

6.8 Place the ISCO 6712 Avalanche automated sampler in the job box along with a 12-volt battery.

6.9 Attach the strainer tube and metal bubbler or Area Velocity sensor at the desired height in the stream, pipe or pond.

6.10 Connect a measured length of vinyl tubing from the sampler through the bottom of the job box to the strainer.

6.11 Depending on the configuration, either connect a piece of vinyl tubing from the sampler to the metal bubbler tube or connect the cable to the Area Velocity module.

6.12 Connect the power cables to the 12 V battery.

6.13 Complete the initial programming of the 6712 Sampler using the procedure in Section 7.0. Refer to the ISCO Operating manual or consult the Monitoring Team Supervisor for further details.
6.14 Create new BMP entry for each site set-up in the Water Quality Database (WQD).
7.0 ISCO 6712 Avalanche Auto-Sampler General Set-up and Programming

Note: Programming steps represent general examples and choices only. Actual programming is unique to an individual site and must be modified in order to collect representative samples. Modification of the programming steps is based on knowledge of the site, expected conditions, professional judgment and experience.

7.1 Place a cleaned, 18.9-liter sample collection carboy in the auto-sampler’s refrigerated sample collection compartment. Insure that lid is removed and sample tube is placed into the carboy.

7.2 Place a charged 12-volt battery in the auto-sampler Job-Box and connect the unit’s power lead to the battery terminals.

7.3 Insert appropriate Flow Module into auto-sampler unit.

7.4 Turn on the auto-sampler “Power”.

7.5 Select “Program”.

7.6 Enter the Program Name (site id).

7.7 Enter the Site Description (site id repeated).

7.8 Enter Units as follows:

- Length (ft.)
- Temperature (C)
- Flow Rate (cfs – BMPs / Mgal - ISM)
- Flow Volume (cf)
- Velocity (fps)

7.9 Select the Mode of Operation based on the hardware configuration selected in 8.3 and the site installation (unique to site; subsequent detailed information required):

- Bubbler Flow Module 730
 - V-Notch Weir (most common):
 - Specify V-Notch angle (Ex. 90°)
 - Data Points (less common – orifice plates and ISM storm water)
 - New Set
 - Clear Data Set
 - Change Name
- Edit Data Points (enter up to 50 data points; level and cfs)
 - Flume (uncommon)

- **Area*Velocity Flow Module 750**
 - Flow Meter
 - Area*Velocity
 - Channel Shape
 - Enter Type
 - Round Pipe (most common)
 - Pipe Diameter (ft.) (Eg. 18 inch pipe = 1.5 ft. diameter)

7.10 Enter **Current Level** (ft.).

- For BMP sites - storm flow only.
 - **Bubbler**
 - Enter water depth from bubbler to bottom of V-Notch in weir (ft.)
 - Water level below bubbler
 - Distance from bubbler to invert of V-notch weir (negative ft.)
 - Water level above bubbler
 - Difference between water level and invert of V-notch weir (negative ft. – below invert; 0.0 ft. at invert; positive ft. above invert)

 Note: Measure distances in inches and divide by 12 to determine distances in ft. Eg. Water level is below bubbler; bubbler is set 1 inch below V-notch weir. Set water depth at -0.08 ft. (1 inch divided by 12 inches/ft. = 0.08 ft.)

 - Area*Velocity
 - Enter (0.000 ft.) when no flow is present.
 - If flow is present, consult the Monitoring Team Supervisor.

- For Stream sites - flow present.
 - Determine current water level from USGS internet website.
 - Enter level (ft.).

7.11 Enter **Offset** (0.000 ft.) if prompted.

7.12 Enter **Data Interval** (5 minutes).

7.13 Enter sample collection container information.
 - Bottles (1).
 - Volume (18.9 L).
 - Suction Line (Length of sampler tubing (ft.)).
7.14 Select **One-Part Program**.

7.15 For **Pacing**:

- Flow Paced
- Flow Module Volume
- Enter (cf) - unique to site; based upon drainage area, forecast precipitation volume, professional judgment and experience.
- No Sample at Start.

7.16 **Run Continuously?** - No.

7.17 Enter number of aliquots to **Composite** (90).

7.18 Enter Sample **Volume** (200 ml).

7.19 Select “Enable”
 - Bubbler Module.
 - Select “Level”.
 - For BMP sites;
 - Water level below invert
 - Enter (>0.001 ft.).
 - Water level at or above invert
 - Enter current water level + (0.01 ft.).
 - For Stream sites; Enter (current water level + 0.05 ft.) - current level + margin of safety before sampler enable.
 - **Area*Velocity Module**.
 - Select “Level”.
 - For dry pipe;
 - Enter (>0.005 ft.)
 - For pipe with flow;
 - Enter (current water level + 0.02 ft.) - current level + margin of safety before sampler enable.

7.20 Enable.
 - Repeatable Enable.
 - No Sample at Enable.
 - No Sample at Disable.

7.21 Countdown Continues While Disabled.
7.22 No Delay to Start.

7.23 Run This Program.

8.0 Auto-Sampler Composite Retrieval

8.1 Stop Program and View “Sampling Report”.

8.2 Scroll through the sampling report and record the time and date of the last aliquot sampled. Enter this information on the Lab COC.

8.3 Connect ISCO RTD 581 to the auto-sampler’s Interrogator port. Disconnect RTD when “Download Complete” is indicated by steady green light.

8.4 Turn off the auto-sampler “Power”.

8.5 Disconnect the battery leads to the auto-sampler.

8.6 Replace the cap on sample collection carboy.

8.7 Remove the sample collection carboy from the auto-sampler’s refrigerated sample compartment and put in cooler for transport to the composite bottling staging area.

9.0 Auto-Sampler Composite Bottling

9.1 Print the appropriate COC forms required for the event.

9.2 Coordinate the sample collection event details with required staff resources and with the CMU lab (number of sites, parameters for analysis, etc.)

9.3 Assemble the required sample collection bottles for each site to be sampled. Pre-print all known information on self-adhesive sample collection bottle labels. Make sure to leave the Sample Collection Time blank (this will be completed when the last aliquot collection time is determined).

9.4 Label the sample collection bottles with the approximate Sample Collection Time (+/- 5 minutes).

9.5 Remove the sample collection bottle cap(s) and place the bottle(s) on a level, stable surface.
9.6 Shake the auto-sampler composite carboy to thoroughly mix the sample.

9.7 Fill the sample collection bottle(s) to the bottom of the neck or to the indicated mark with the auto-sampler composite, approximately 80-90% full. Be careful not to overfill the sample collection bottles!

9.8 Replace the sample collection bottle cap(s).

10.0 Auto-Sampler Grab Sample Collection (pump-grab)

<table>
<thead>
<tr>
<th>Note: Pump grabs are not commonly collected, but may be utilized in special circumstances, as required.</th>
</tr>
</thead>
</table>
| 10.1 Turn on the auto-sampler “Power”.
| 10.2 Select “Other Functions”, “Manual Functions”, “Grab Sample”.
| 10.3 Enter sample Volume (ml), based on collection container.
| 10.4 Disconnect large diameter sample collection tubing from the peristaltic pump housing on the front, left-side of the auto-sampler unit.
| 10.5 Carefully open the sample collection bottle cap. Be sure not to contact any inside surface of the bottle cap or the bottle.
| 10.6 Press Enter when ready to collect the sample.
| 10.7 Allow a small amount of sample water to flow through the tube, onto the ground to clear the line.
| 10.8 Direct the flow from the large diameter sample collection tubing into the sample collection bottle, but do not contact any surfaces of the collection bottle.
| 10.9 Fill the sample collection bottle to the indicated volume. Do not overfill bottle.
| 10.10 Replace the sample collection bottle cap.
| 10.11 Re-connect the large diameter sample collection tubing.

11.0 Post-Sample Collection

11.1 For failed events, document reason for failure (power fail, pacing...) in WQD and forward to Monitoring Team Lead for review.
11.2 Place all sample collection bottles (and blanks) upright in the cooler. Do not submerge sample bottles in ice-melt water as indicated in 4.3.
11.3 For potential valid samples, give RTD to Monitoring Team Lead for pre-sample screening.

11.4 Monitoring Team Lead will download RTD to Flowlink software.

11.5 Validate sample by determining if $\geq 70\%$ of hydrograph collected. If $<70\%$ of the hydrograph was represented, discard the sample and follow 11.1.

11.6 Complete the COC.

11.7 Deliver all sample bottles in the cooler on ice to the CMU Lab for analysis.

11.8 Monitoring Team Lead will enter field data and Flowlink software data into WQD and forward to WQ Data Manager for final review.

11.9 Submit a copy of the completed COC form to the WQ Data Manager.

12.0 Field QC Blank Collection (when required)

12.1 When required by a project or program element, assemble one set of sample collection bottles for QC blanks.

12.2 When QC blanks are required, fill a certified-clean 4-liter bottle with lab distilled/de-ionized reagent grade water for each auto-sampler.

12.3 Replace the small diameter auto-sampler sample collection tubing on the back, left-side of the unit with a short section of clean, new tubing.

12.4 Remove the cap from the distilled/de-ionized reagent grade water or the sterilized buffered bacteriological blank solution as appropriate.

12.5 Insert the short section of new sample collection tubing into the distilled/de-ionized reagent grade water to draw the blank solution up through the auto-sampler unit.

12.6 Turn on auto-sampler “Power”.

12.7 Select “Other Functions”, “Manual Functions”, “Grab Sample”.

12.8 Enter sample **Volume** (2500 ml required min for full parameter suite analysis).
12.9 Press Enter when ready to collect the sample.

12.10 Collect the required volume of sample blank in the sample collection carboy.

12.11 Remove the blank collection bottle cap(s).

12.12 Shake the auto-sampler composite carboy to thoroughly mix the sample (blank).

12.13 Place the blank collection bottle(s) on level, stable surface. Fill the blank collection bottle(s) to the bottom of the neck or to the indicated mark with the appropriate blank solution, approximately 80-90% full. Be careful not to overfill the blank collection bottles!

12.14 Replace the blank collection bottle cap(s).

12.15 Refer to Section 11.0 for Post Sample Collection procedures.

13.0 References

APPENDIX E

Pilot SCM Data Analysis Protocol

Charlotte-Mecklenburg Storm Water Services (CMSWS) conducts routine BMP Performance Monitoring for both regulatory and non-regulatory purposes. Regulatory monitoring may be utilized to ensure BMP compliance with water quality standards or performance criteria mandated by State or local government, as required by Phase I and Phase II NPDES permits, the Charlotte-Mecklenburg Post-Construction Ordinance, etc. Non-regulatory monitoring is generally utilized to satisfy grant requirements for Capital Improvement Projects as well as assessing the general performance and efficiency of select BMPs.

BMP monitoring may include both inter-site and intra-site comparisons, depending on the monitoring goals. Inter-site comparisons (site to site) can test varying BMP designs on similar land-use types, and test varying land-use types on one specific BMP design. Intra-site comparisons can test long term efficiency, maintenance intervals, site stabilization, etc. at one site over a specified time period. Both inter-site and intra-site analysis of BMP performance can be utilized to optimize BMP design and to conserve limited resources.

Charlotte-Mecklenburg Storm Water Services will base routine BMP Performance Monitoring and analysis on guidance provided in the October 2009 publication, Urban Stormwater BMP Performance Monitoring prepared by Geosyntec Consultants and Wright Water Engineers under contract with the EPA. In addition to the EPA, the guidance preparation was sponsored by the American Society of Civil Engineers (ASCE), the Water Environment Research Foundation (WERF), and the Federal Highway Administration. The published guidance recommends that BMP performance monitoring be analyzed utilizing what is termed the Effluent Probability Analysis method. Each section below describes components of the Effluent Probability Analysis approach in detail, where applicable.

A great deal of environmental data is reported by analytical laboratories as “below detection limit” (nondetect). This does not mean that the target pollutant was not present, it simply means that the level of pollutant was too small to quantify given the limits of the analytical test procedure. There is still valuable information in a reported nondetect. However, traditionally, analysts have simply substituted the detection limit or some arbitrary number (like ½ the detection limit) for these unspecified values. This introduces an invasive pattern in the data, artificially reduces variability and subsequently narrows the error measurement range. This can affect hypothesis testing and increase the likelihood of accepting incorrect conclusions. Therefore, in an effort to improve the accuracy of calculated estimates and hypothesis testing results, and to ensure that the results of all analysis are considered “defensible” to the larger scientific community, CMSWS will treat nondetect data in accordance with published guidance from Dr. Dennis Helsel, formerly of the United States Geologic Survey (USGS) and currently director of Practical Stats. Dr. Helsel published Nondetects and Data Analysis; Statistics...
for Censored Data in 2005, specifically addressing the issues of non-detect data and how to best treat such data during analysis. This book will serve as guidance on handling nondetect values encountered in CMSWS BMP performance monitoring data.

At a minimum, a complete performance analysis report will include a review and qualification of the storm events sampled, descriptive statistics and calculated pollutant removal efficiencies for each analyte of interest. All statistical analysis will be performed using some combination of Minitab 16 with add-in macros from Dr. Helsel (NADA – Practical Stats), Analyze-It for Microsoft Excel, DOS-based software developed by the USGS, or other commercially available software. Each section below includes an example analysis based on data previously collected by CMSWS.

5.2.1 Storm Event Criteria Qualification

Not every storm event is suitable for sampling; nor is each sampled storm event suitable for use in performance analysis. In fact, some storm events sampled are not submitted to the lab for analytical results in an effort to conserve resources. These are complex decisions based on various factors, including: storm duration, intensity, precipitation amount, antecedent weather conditions, the volume of discharge collected, and the percentage of the storm hydrograph captured. Each of these factors plays a very important role in storm event qualification.

It is important to note that storm event qualification occurs prior to review of the analytical data. It is also important to note that analytical data quality control is an independent process completely separated from event qualification. This process was not intended or expected to bias results, but rather simply to control exogenous variables and therefore minimize variability in the dataset. The overall goal of this approach is to use only events that meet specified data quality objectives in order to achieve statistically significant (or non-significant) results from the smallest dataset possible in order to conserve resources.

In general, CMSWS does not monitor an event unless it has been dry weather for 3 days prior to the target storm event. CMSWS defines an acceptable “dry” weather period preceding monitored events as 3 consecutive 24 hour periods during which no more than 0.1 inches of precipitation fell during any one period. This antecedent dry weather period is consistent with guidance from the State of North Carolina Department of Environment and Natural Resources (NC DENR) and is thought to be the minimum sufficient time for pollutants to “build up” on a site between storm events.

CMSWS also does not monitor storm events that exceed the 2-year design storm. For the Charlotte-Mecklenburg area of the NC Piedmont, the 2-year design storm is approximately 3.12” in 24 hours. For BMP efficiency monitoring analysis, CMSWS utilizes only storms that meet BMP design criteria. For many BMPs the specified design criteria is a 1-inch rain event in a 24 hour period. However, this does not apply to many proprietary “flow-thru” devices and other BMPs designed to different or specific standards. In this way, storm flow bypasses, which may introduce additional uncertainty
in an analysis, are excluded. Events monitored that exceed the BMP design capacity would be utilized for watershed level land use estimates of loading only.

CMSWS only submits storm samples to the lab for analysis if there were enough aliquots collected in the composite to provide the laboratory with sufficient sample volume to analyze any identified critical parameters. The typical target is 15 aliquots minimum; however sufficient volume can be produced from fewer aliquots and should be reviewed case-by-case. On the other end of the spectrum, no storm samples will be analyzed if the auto compositor finishes its cycle of 90 aliquots before the storm ends, unless at least 70% of the hydrograph was represented. The criterion to sample a minimum of 70% of the hydrograph is intended to ensure that the composite sample is representative of the overall storm flow discharge. This threshold is consistent with Technology Acceptance Reciprocity Partnership (TARP) Tier II protocols (July 2003, Sect. 3.3.1.2 – Identifying Storms to Sample). Any noted flow problems, power failure or other equipment related interferences may result in a discarded sample. Only samples that are deemed suitable for analysis by these criteria are utilized in the determining the overall performance of a BMP.

Special situations or certain projects may arise that require lower standards for acceptable storm event criteria. Any deviations from the aforementioned criteria will be noted in the associated performance report in order to clearly identify which criteria were compromised, why the standards were lowered, and what bias or influence may be realized, if known. It is again important to note that these storm event criteria will be applied to data sets prior to any exploratory analysis and without preconceived ideas or goals for the outcome. In this way, bias to an objective outcome will be minimized.

5.2.2 Characterizing Discharge (Storm Volume Reduction)

BMP performance analysis begins with understanding the nature of the storm events sampled. Once the storm events have been reviewed and qualified as approved for analysis, discharge data will be used to determine if practice level storm volume reduction has been realized. It should be noted that this component of the analysis is not appropriate for all BMPs. Those BMPs designed as flow-thru devices, with no expectation of storm water retention or infiltration will be treated accordingly. Many such BMPs are equipped with influent flow measurement equipment only. In these cases, the influent storm volume is assumed to equal the effluent storm volume, with treatment realized in pollutant concentration reduction only.

For those BMPs with some expectation of storm water retention or infiltration, characterization and analysis of the storm events and the discharged storm volume is critical. There are five relatively simple ways that this analysis can be conducted and storm events characterized; presence/absence of effluent discharge, absolute volume reduction, relative volume reduction, discharged volume per area and discharged volume per impervious area. The metrics themselves are fairly self-explanatory and simple to calculate.
The most practical of these approaches is likely the absolute volume reduction, realized over time. For this analysis, only paired influent-effluent discharge data can be utilized. For data sets where there are fewer paired observations, the error in estimates will be greater. Essentially, each paired observation is evaluated as:

Absolute Volume Reduction = Influent Volume – Effluent Volume

The volume reductions are then summed over the period of observation. Once the data have been summed, the relative reduction will also be evident, if any. The graphic created in Figure 4 can be helpful to understanding and interpreting this concept visually. Absolute storm flow volumes for the paired influent and effluent samples are plotted as independent (x-axis) and dependent variables (y-axis), respectively. The diagonal line represents the point at which influent volume is equal to effluent volume. Events represented in the lower and right portion of the graphic indicate that influent volume exceeded effluent volume, and consequently some reduction in absolute volume was realized. If a majority of the events fall in this area, as in this example, it is likely that long term reductions will be realized as well.

Figure 4

Discharge data and volume reductions should be tested for statistical significance. Hypothesis testing for paired discharges, influent and effluent, should utilize the Sign test to determine if any reductions in storm volume discharge realized were statistically significant. In this example, the paired influent and effluent samples were found to be significantly different (p=0.0326). If paired discharges are not available, other suitable nonparametric hypothesis tests, such as the Mann-Whitney test should be utilized on the pooled event data; influent vs. effluent. Specifics about hypothesis testing are covered in Section 5.2.4.
5.2.3 Descriptive Statistics

For each analyte of interest, the following information will be provided, where appropriate: n (number of observations), Mean, 95% Confidence Interval (CI) of the mean, Standard Error (SE), Standard Deviation (SD), Minimum value observed, 1st Quartile value, Median, 95% Confidence Interval (CI) of the median, 3rd Quartile value, Maximum value observed, and the Inter-Quartile range (IQR). Descriptive statistics are often accompanied by a graphic indicating the data distribution and any identified outliers.

Figure 5 indicates an example of descriptive statistics, which provide basic parametric and nonparametric information on the distribution of the data collected.

Figure 5

ROS Estimated Statistics for FLIDU-NH4

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>N*</th>
<th>Mean</th>
<th>SE Mean</th>
<th>StDev</th>
<th>Minimum</th>
<th>Q1</th>
<th>Median</th>
<th>Q3</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTIMATE</td>
<td>36</td>
<td>0</td>
<td>0.540</td>
<td>0.122</td>
<td>0.734</td>
<td>0.042</td>
<td>0.195</td>
<td>0.410</td>
<td>0.635</td>
<td>4.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTIMATE</td>
<td>0.440</td>
</tr>
</tbody>
</table>

ROS Estimated Statistics for FLIDT-NH4

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>N*</th>
<th>Mean</th>
<th>SE Mean</th>
<th>StDev</th>
<th>Minimum</th>
<th>Q1</th>
<th>Median</th>
<th>Q3</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTIMATE</td>
<td>36</td>
<td>0</td>
<td>0.212</td>
<td>0.101</td>
<td>0.608</td>
<td>0.001</td>
<td>0.007</td>
<td>0.030</td>
<td>0.155</td>
<td>2.900</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTIMATE</td>
<td>0.148</td>
</tr>
</tbody>
</table>

These descriptive statistics are represented graphically in Figure 6 below, in order to gain a visual understanding of the data distribution. A box plot can be utilized to quickly identify relative differences between the sampling sites.

Figure 6
The top of each box represents the 3rd Quartile value (75th percentile), whereas the bottom of each box represents the 1st Quartile (25th percentile). The difference between the top and the bottom of a box represents the Inter-quartile Range. The “waist” or central line within a box represents the Median. The upper and lower line extending from the box often represent the extent of the observed data within 1.5 IQRs of the upper and lower quartile. The example plot in Figure 6, displays outliers beyond 1.5 IQRs as asterisks (*). In some cases, outliers beyond 3 IQRs are represented as plus signs (+). It is important to note that outliers could be removed for the purposes of visualization, but should not be removed from the dataset prior to analysis. The blue horizontal line in Figure 6 marked as “DL=0.1” indicates the laboratory detection limit for NH₄, which in this analysis was 0.10 mg/l. Data below the laboratory detection limit cannot be accurately represented in a box plot.

The graphic in Figure 7 can also be helpful to visualize the data set in relation to the individual storm events that produced the runoff. Influent and effluent concentrations are paired by storm event, where possible. In this particular graphic, numerous values were reported as nondetect and 1 value (FLIDU - event #31) was reported at 0.04 mg/l (*) which is well below the typical detection limit of 0.10 mg/l. Any values that appear at or below the specified detection limit should be treated and viewed only as unspecified values occurring anywhere below that value.

Figure 7
5.2.4 Hypothesis Testing: Pairs or Groups

In general, environmental data is not normally distributed and in most cases, non-parametric hypothesis tests are utilized to test the difference in median location of two or more populations. However, in the event that data sets are found to be normally distributed, parametric statistical tests could be utilized for analysis, if advantageous.

The most common parametric tests utilized will be the Student’s T-Test and the Analysis of Variance (ANOVA) for comparison of means. However, the occurrence of normally distributed data and the use of parametric analysis techniques will likely be the exception, rather than the rule. For this reason, the examples and discussion to follow will focus on typical, non-parametric analysis techniques for non-normally distributed environmental data sets.

The first step in selecting the most appropriate nonparametric test method is to determine if there are a sufficient number of data pairs for analysis. For sites with large numbers of unpaired observations, the use of the hypothesis tests for groups (pooled data) would be most appropriate. However, for sites where there are significant numbers of paired observations, hypothesis tests designed for paired data will have more power to detect differences.

5.2.4.1 Hypothesis Testing – Group (Pooled) Data

The most commonly utilized non-parametric hypothesis tests for pooled datasets are the Mann-Whitney U test for 2 groups (also known as the Wilcoxon Rank Sum test) and the Kruskal-Wallis test for 3 or more groups. Both tests utilize rank or rank scores, rather
than raw data observations, so there is no need to transform data. These 2 tests are analogous to the traditional T- tests utilized for parametric data, with the exception that the non-parametric tests compare the location of the median score, rather than the mean, and are appropriate for small data sets with non-normal distributions. Both the Mann-Whitney U test and the Kruskal-Wallis test are appropriate for small data sets; however a minimum of 12-15 observations are often required to discern statistical differences. Unless otherwise specified, p-values <0.05 will be considered significant.

Figure 8 represents an example output from a Mann-Whitney non-parametric test, when applied to an example pooled Ammonia-Nitrogen data set. Based on the box plot constructed for the dataset (see Figure 6), the influent NH₄ concentration appeared to be much greater than the effluent concentration. Therefore, the hypothesis tested was directional; H₀: Influent>Effluent. The corresponding 1-tailed p-value (p=0.0000) indicated that the observed difference between the influent and the effluent was highly significant.

If 3 test groups had been present, for example, Influent, Fore bay and Effluent, the Kruskall-Wallis test could have been utilized to test all 3 groups against a control or against each other. Such contrasts can provide additional useful information. In this example, it may be interesting to determine if there is a significant pollution concentration difference between the influent sample and the fore bay.
Figure 8

Mann-Whitney Test and CI: FLIDU, FLIDT

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIDU</td>
<td>36</td>
<td>0.4100</td>
</tr>
<tr>
<td>FLIDT</td>
<td>36</td>
<td>-1.0000</td>
</tr>
</tbody>
</table>

Point estimate for ETA1-ETA2 is 1.1900
95.1 Percent CI for ETA1-ETA2 is (0.3399, 1.3900)
W = 1729.5
Test of ETA1 = ETA2 vs ETA1 > ETA2 is significant at 0.0000
The test is significant at 0.0000 (adjusted for ties)

Use tie adjustment. All values below 0.1 were set = -1.
If a median = -1, it means the median is <0.1

5.2.4.2 Hypothesis Testing – Paired Data

The most commonly utilized non-parametric hypothesis tests for **paired** datasets are the Sign test and the Wilcoxon Signed Ranks test. The main difference between these 2 tests is that the Wilcoxon Signed Ranks test assumes that the 2 groups have a similar shape or distribution of data. The Sign test makes no assumptions about the shape of the data distribution, and therefore is more often utilized. Both tests are appropriate for small datasets and unless otherwise specified, p-values <0.05 will be considered significant.

Figure 9 represents an example output from a Sign test, when applied to an example Ammonia-Nitrogen **paired** data set (Influent-Effluent for each event sampled). Based on the box plot constructed for the dataset (see Figure 6), the influent NH₄ concentration appeared to be much greater than the effluent concentration. Therefore, the hypothesis tested was directional; H₀: Influent>Effluent. The corresponding 1-tailed p-value (p=0.0007) indicated that the observed difference between the influent and the effluent was highly significant.

Figure 9

Sign Test for Median: FLIDU-NH4_1-FLIDT-NH4_1

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Below</th>
<th>Equal</th>
<th>Above</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIDU-NH4_1-FLIDT-NH4_1</td>
<td>36</td>
<td>4</td>
<td>4</td>
<td>28</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p-value (adjusted for 'Equal' ties) = **0.0007**

Median difference adjusted for nondetects = **0.28**

The box plot referenced in Figure 6 indicates one traditional way to visually explore the difference between the influent NH₄ concentration and the effluent concentration. A
second way to visually explore the differences is to generate a probability plot based on the observed values at various percentiles. Figure 10 represents a probability plot generated from the example data set, and indicates that reduced effluent concentrations were observed over the range of observations.

![Probability Plot of NH3-N (lbs)](image)

In some cases when there is a single detection limit, the observations may “flatten” out and form straight, vertical-dropping lines. This typically indicates that the analytical Detection Limit (DL) has been realized. In this particular case, there were multiple detection limits for NH₃ storm water dilutions below 0.10 mg/l. Although there are points represented in this graphic as asterisks (*), they represent nondetects and should be treated as unspecified values with a true location anywhere between the y-intercept and the x-axis.

5.2.5 BMP Efficiency

BMP Efficiency is commonly reported and there are many recognized metrics. CMSWS will typically report BMP efficiency by analyte in 1 of 3 ways; Pollutant Concentration Removal, Summation of Load [Reduction], or Individual Storm Load [Efficiency]. Each of these methods for calculating BMP efficiency is based on varying assumptions and each has both strengths and limitations. As a consequence, each metric may yield differing results when applied to the same dataset. An a priori effort will be made to utilize the most appropriate metric(s), based on the detailed pros and cons of each as published in Appendix B of the October 2009 Guidance.

5.2.5.1 Efficiency Ratio – Pollutant Concentration
Where appropriate, the calculated Efficiency Ratio (ER), which is sometimes referred to as the Pollutant Removal Efficiency, will be provided for each analyte of interest. ER is typically expressed as a percentage of the analyte concentration removed from the influent, when compared to the effluent sample. Ideally, ERs are calculated based on complete data pairs; however, there are situations where sample results are aggregated or grouped as “influent” and compared to grouped “effluent” samples.

The formula typically used to calculate the pollutant concentration ER utilizes the average influent and effluent Event Mean Concentration (EMC) for each analyte of interest. However, because the EMC data in the example data set is not normally distributed, the average or mean concentration has very little real value. Simply averaging the influent EMCs and the effluent EMCs presents a potentially biased result. According to the October 2009 Guidance, “The median EMC may be more representative of the typical or average site storm event discharge concentration because the value is more robust in the presence of outliers, when compared to the mean. The mean EMC for a site, on the other hand, may be completely biased by a single event that had an abnormally high discharge concentration due to an anomalous point source mass release (e.g., a silt fence failing at a construction site).” Therefore, the formula used for calculating Efficiency Ratio will be:

\[
\text{Efficiency Ratio (ER)} = \frac{\text{Median Influent EMC} - \text{Median Effluent EMC}}{\text{Median Influent EMC}}
\]

In the specific case of the example NH₄ data set, the ROS median of the influent concentration was 0.410 mg/l, whereas the median effluent concentration was 0.030 mg/l. Using this calculation, the ER for the example data set NH₄ would be 0.93, or approximately 93% NH₄ concentration removed. The ROS median was used in this case because analytical values for NH₄ were often reported as nondetect. Simply using the detection limit for these values greatly biases the dataset and produces inaccurate results. The ROS procedure determines the most accurate, least biased median score in the presence of nondetect data even when the percentage of non-detect data exceeds 50% of the total observations. When there are no nondetect values are present in the dataset, the true median (50th percentile observation) should be utilized.

5.2.5.2 Summation of Load (Reduction) - SOL

For some BMPs, the pollutant load reduction may be of more interest than the pollutant concentration reduction. This is especially true when the BMP is designed for infiltration so that the total discharge volume is significantly less than the influent volume (see section 5.2.2). A pollutant “load” is simply the mass of a pollutant, determined from the pollutant concentration and the total storm volume discharge, adjusted for units. Essentially, pollutant concentration (mass per volume) multiplied by storm volume produces a result of pollutant mass. The pollutant mass (load) is typically reported in pounds.
The Summation of Loads (SOL) is one methodology that will most likely be utilized when paired influent and effluent events are limited or altogether unavailable. In these cases, all influent load values will be summed, even if there is no corresponding effluent load data for that event. Likewise, all effluent load data will be summed. SOL is then calculated as follows:

\[
\text{Sum of Loads (SOL)} = 1 - \frac{\text{Sum of Effluent Loads}}{\text{Sum of Influent Loads}}
\]

Calculating a load based on a nondetect observation is problematic. The most conservative approach is to use the method detection limit (DL) as the concentration value for the calculation, but carry the nondetect qualifier with it. For example, if an observed concentration of \(\text{NH}_4\) in a sample was reported at <0.10 mg/l (non-detect) for a discharged volume of 10,000 cubic feet, the converted load would be reported as <0.062 lbs.; derived as follows:

\[
10,000 \text{ ft}^3 \times 28.317 \text{ liters/ft}^3 = 283,168.5 \text{ liters} \\
283,168.5 \text{ liters} \times <0.10 \text{ mg/l NH}_4 = <28,316.85 \text{ mg NH}_4 \\
<28,316.86 \text{ mg NH}_4 \times 2.204 \times 10^{-6} \text{ mg/pound} = <0.062 \text{ lbs. NH}_4
\]

The observation of <0.062 lbs. \(\text{NH}_4\) represents only 1 load from 1 event. If there are 15 events, each of these loads must be summed. If there are more than a few nondetects in the dataset, the answers become less certain. The most conservative approach at this point is to present the load as a range to encompass the uncertainty inherent in the nondetect data. The range minimum would be calculated based on the assumption that all of the nondetect observations were true zero (0) observations. The range maximum would be calculated based on the assumption that all nondetect observations were equal to the reporting limit. Because of this limitation, the Summation of Load methodology is less useful in the presence of significant nondetect data.

In the example of the FLID Ammonia dataset, the Summation of Load pollutant reduction was determined to be SOL = 70.4\%, calculated as follows:

<table>
<thead>
<tr>
<th>Summation of Load Calculations - FLID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum Influent Load</td>
</tr>
<tr>
<td>Sum Effluent Load</td>
</tr>
</tbody>
</table>

\[
\text{SOL} = 1 - \frac{132,298.1}{446,791.9} = 0.704
\]

\[
\text{SOL} = 70.4\% \text{ NH}_4 \text{ removed}
\]

5.2.5.3 Individual Storm Load (Efficiency) – ISL

\[
\text{Storm Efficiency} = 1 - \frac{\text{Effluent Load}}{\text{Influent Load}}
\]
According to the *October 2009 Guidance*, the average efficiency of all of the paired events represents the ISL. However, as discussed in other sections, the average is a biased measure in this situation, particularly in the presence of nondetect data. Another complication observed in calculating ISL comes in the form of negative storm efficiencies. Negative efficiencies represent an export of pollutants from a BMP, suggesting that the structure itself is a source or generator. These values may very well be real and cannot be ignored in the calculation. Unfortunately, nonparametric statistics do not tolerate negative values. Therefore several techniques must be combined in order to treat this data in an unbiased manner in order to produce the best result possible.

First, the nondetect qualifiers must be carried along with the individual storm efficiencies when calculated. Second, a positive fixed value, greater than or equal to the absolute value of the most negative individual storm efficiency observed must be added to each, so that all efficiencies are made positive. Third, use Kaplan-Meier statistics to estimate the median efficiency score in the presence of nondetect data. Make sure to use the correct directional qualifier in the test to ensure that the efficiencies are treated as right-censored values where appropriate. Finally, subtract the fixed value added in step 2 from the estimated median to reveal the most accurate, unbiased ISL available for a dataset with both negative efficiencies and nondetect observations present. Following the 2009 Guidance for the FLID NH$_4$ dataset, the Average Storm Efficiency was -25.2% of the pollutant load removed. This produces a highly biased estimate, as discussed, due to the presence of a few extreme observations, negative efficiencies and nondetect data.

In order to develop an unbiased estimate, the values were flipped using a fixed value of 8.0 (most negative value observed was (ISL > -7.712) and running the Kaplan-Meier statistics for right-censored data on the transformed dataset. When the fixed value was subtracted from the KMStats estimate, the unbiased representative storm efficiency was determined to be ISL = 66.5%.

Figure 11

<table>
<thead>
<tr>
<th>Statistics using Kaplan-Meier, with Efron bias correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right-Censored data (+8)</td>
</tr>
<tr>
<td>Largest value is censored, so estimated mean is biased low.</td>
</tr>
<tr>
<td>Mean ISL+8</td>
</tr>
<tr>
<td>Standard error</td>
</tr>
<tr>
<td>Standard Deviation</td>
</tr>
<tr>
<td>90th Percentile</td>
</tr>
<tr>
<td>75th Percentile</td>
</tr>
<tr>
<td>Median</td>
</tr>
<tr>
<td>25th Percentile</td>
</tr>
<tr>
<td>10th Percentile</td>
</tr>
</tbody>
</table>

* NOTE * One or more variables are undefined
* NOTE * Subtract 8 from each value in this example
A complete statistical analysis will be completed for a site upon request; however a minimum of 12 complete, acceptable sample events must be collected and analyzed first, as described in section 5.2. Assuming 12 events are collected each fiscal year, as is typically requested, an annual analysis and evaluation of each site would be appropriate, if requested.

Identifying statistical significance in storm water samples is inherently difficult, given the dynamic nature of storm events, variable pollutant build-up, lab error, sampling error, etc. All exogenous factors must be minimized in order to tease out subtle differences between sites, over time. Problems with sampling equipment, site installation, and BMP design can easily obscure any differences that may otherwise have been evident. More focused effort on fewer sites has quality benefits that are easy to realize.

It is important to have confidence in the process in order to have confidence in the final product. Adopting standard protocols for site specific sampling has obvious benefits. Limiting the range of storms sampled to those that produce adequate flow / intensity but do not exceed design capacity, and allowing sufficient time for pollutant build-up, along with various other targets increase confidence in the samples and in the data. Following protocols, similar to those set forth in the TARP TIER II project, build confidence in the final product.

The Environmental Analyst will develop a generalized reporting format for BMP Performance Monitoring Data Analysis. This format will likely be modified several times before a final format is approved, but there are numerous components that must be included at a minimum. The following sections will be included in each BMP Monitoring Data Analysis Report, where appropriate:

1. Background
 a. BMP installation purposes
 b. Goal (why installed)
2. Site Characteristics
 a. Land-Use description, drainage area
 b. BMP design / equipment set-up
3. Data Quality Objectives
 a. What indicates good data
 b. Stated performance goals
4. Storm Event Characterization
 a. Storm event criteria
 b. Acceptable events
5. Analytical Results
 a. Discharge
 b. Analytes
 c. Graphics
6. Summary and Conclusions
Additional report sections may be added or modified to suit the purposes of the specific BMP and situation. The target audience for the general reports will be Charlotte-Mecklenburg Storm Water Services staff and stakeholders, unless otherwise specified.
APPENDIX F

Charlotte-Mecklenburg Storm Water Services
Quality Assurance Project Plan (QAPP)

A1. Signature and Approval Sheet

APPROVED BY:

Rusty Rozelle, Water Quality Program Manager
___ Date

Jeff Price, QA/QC Officer
___ Date

Tony Roux, Bioassessment Lab Supervisor
___ Date

David Buetow, Field Measurement Lab Supervisor
___ Date

Steve Jadlocki, Charlotte NPDES Administrator
___ Date

State of North Carolina Representative
___ Date
A2. Table of Contents

SECTION A: PROJECT MANAGEMENTError! Bookmark not defined.
A1. Signature and Approval Sheet ... 73
A2. Table of Contents ... 74
A3. Distribution List ... 75
A4. Project Organization ... 76
A5. Problem Definition and Background ... 80
A6. Project/Task Description and Schedule .. 82
A7. Quality Objectives and Criteria ... 89
A8. Special Training/Certification ... 90
A9. Documentation and Records .. 90

SECTION B: DATA GENERATION AND ACQUISITION 92
B1. Sampling Process Design ... 93
B2. Sampling Methods ... 103
B3. Sample Handling and Custody ... 104
B4. Analytical Methods .. 105
B5. Quality Control ... 106
B7. Instrument Calibration and Frequency .. 108
B8. Inspection/Acceptance Requirements for Supplies and Consumables 108
B10. Data Management .. 111

SECTION C: ASSESSMENT AND OVERSIGHT .. 113
C1. Assessments and Response Actions .. 114
C2. Reports to Management .. 114

SECTION D: DATA VALIDATION AND USABILITY 115
D1. Data Review, Verification and Validation .. 116
D2. Validation and Verification Methods ... 116
D3. Reconciliation with User Requirements .. 117

Appendices
Appendix 1: MCWQP Organizational Chart
Appendix 2: MCWQP Standard Administrative Procedures for all Monitoring Programs
Appendix 3: MCWQP Standard Operating Procedures for Water Sample Collection and Field Measurement Collection
Appendix 4: MCWQP SUSI Index and Lake Water Quality Index Documentation
Appendix 5: MCWQP Program Indicators Documentation
Appendix 6: NCDENR Water Quality Standards and MCWQP Internal Action Watch Levels
Appendix 7: Employee Training Form
A3. Distribution List
A4. Project Organization

All water quality sampling and field measurement collection conducted by the Mecklenburg County Water Quality Program (MCWQP) is performed by permanent or temporary staff of the MCWQP. Data management and Quality Assurance/Quality Control activities are either conducted or supervised by the MCSWQP QA/QC Officer. Field work is performed by staff in each of the three sections, which correspond to three distinct geographic areas of Mecklenburg County. Chemical, physical and bacteriological analyses are performed by the Charlotte Mecklenburg Utilities (CMU) Laboratory. Macro invertebrate and fish sampling and analysis are performed by the Mecklenburg County Bioassessment Laboratory. Results of the MCWQP sampling efforts are provided to several entities; Charlotte-Mecklenburg Storm Water Services, Charlotte Mecklenburg Utilities, the Towns of Davidson, Cornelius, Huntersville, Pineville, Matthews and Mint Hill, the North Carolina Department of Environment and Natural Resources (NC DENR), private developers and the citizens of Mecklenburg County.

An abbreviated organizational chart for the MCWQP indicating all entities involved in the water quality sampling program is provided in Figure A4.1. A complete organizational chart for the entire MCWQP is provided in Appendix 1. Information concerning individuals assigned to each role can be obtained by contacting Rusty Rozzelle at 704-336-5449 or rusty.rozzelle@mecklenburgcountync.gov.

Figure A4.1 – MCWQP Organizational Chart
Project Manager and Supervision

Program Manager
Rusty Rozzelle
MCWQP – Program Manager
- Manages MCWQP
- Supervises QA/QC Officer, Group Supervisors and Administrative Support Staff
- Ultimately responsible for ensuring that the program is conducted in accordance with this QAPP
- Reviews and approves all reports, work plans, corrective actions, QAPP and other major work products and revisions
- Approves changes to program; ensures changes are consistent with program objectives and customer needs
- Program Development
- Reports to Mecklenburg County & Towns elected officials

QA/QC Officer
Jeff Price
MCWQP – Senior Environmental Specialist
- Acts as liaison between program manager and supervisors, project officers and field personnel
- Coordinates logistics of program, including sampling schedule, production and maintenance of forms and station database
- Responds to issues raised by program manager, customers or citizens. Recommends response action or change when necessary.
- Performs all aspects of data management for MCWQP monitoring program
- Fulfills requests for raw data
- Assists in training field staff
- Conducts periodic field audits to ensure compliance with QAPP and SOP
- Calculates SUSI index and communicates results to staff, elected officials and general public
- Performs data screening and action/watch reports and communicates results to MCWQP Supervisors to assign follow-up activities

Water Quality Supervisor
David Caldwell – Catawba Group
John McCulloch – South Catawba Group
Richard Farmer – Yadkin Group
- Supervise project officers and field staff ensuring that deadlines are met and tasks are completed in a timely manner
- Assign follow up activities when action/watch levels are exceeded (communicated to the supervisors by QA/QC Officer)
- Assign staff resources as necessary to complete monitoring activities
- Conduct sampling as necessary to fulfill work plan requirements
- Supervise Bioassessment Laboratory Supervisor
- Supervise State Certified Laboratory Supervisor (field measurements)
Supervise all activities of MCWQP in their respective geographic area of responsibility
Act as follow-up, emergency response and service request monitoring project officer for their geographic area

Field Activities

Project Officers

<table>
<thead>
<tr>
<th>Name</th>
<th>Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meredith Moore</td>
<td>TMDL Stream Walks</td>
</tr>
<tr>
<td></td>
<td>Industrial Monitoring</td>
</tr>
<tr>
<td>Olivia Edwards</td>
<td>CMANN</td>
</tr>
<tr>
<td>Jon Beller</td>
<td>FIM</td>
</tr>
<tr>
<td></td>
<td>Bacteriological Monitoring</td>
</tr>
<tr>
<td></td>
<td>ISM Monitoring</td>
</tr>
<tr>
<td></td>
<td>BMP Monitoring</td>
</tr>
<tr>
<td>David Buetow</td>
<td>Lake Monitoring</td>
</tr>
<tr>
<td>Tony Roux</td>
<td>Biological Monitoring</td>
</tr>
</tbody>
</table>

- Coordinate and conduct sampling events
- Ensure staff are properly trained in procedures for individual project area
- Compile annual reports
- Act as point of contact for individual project area
- Calculate Lake Water Quality Index (David Buetow)
- Review automated CMANN data for threshold exceedances (Olivia Hutchins)
- Work with QA/QC Officer to ensure deadlines and other project requirements (such as specific parameters) are met
- Responsible for maintaining specialized sampling equipment for assigned projects

Field Staff

- Chris Elmore
- Don Cecerelli
- Amber Lindon
- Jason Klingler
- Ron Eubanks
- Heather Davis
- Catherine Knight
- Tara Stone
- Brian Sikes
- Michael Burkhard
- Corey Priddy
- Heather Sorensen
- Andrew Martin
- Vacant Inspector Position

- Perform sampling events in accordance with QAPP and SOPs
- Notify supervisor or QA/QC Officer of any issues encountered

Laboratory Analysis

Bioassessment Laboratory Supervisor- Biological Certificate Number - 036

Tony Roux – Senior Environmental Specialist
- Manage MCWQP Bioassessment Laboratory
- Responsible for oversight of all biological sample collection (fish and macro invertebrates)
- Responsible for developing training materials and training staff on proper biological sampling techniques
- Responsible for oversight of all biological sample analysis and reporting of results and indexes
- Responsible for maintaining North Carolina State Certification for MCWQP Bioassessment Laboratory
- Responsible for maintaining all sampling equipment

State Certified Laboratory (Field Parameter Only) Supervisor – Certificate No. 5235
David Buetow – Senior Environmental Specialist

- Responsible for ensuring that all chemical/physical monitoring equipment and procedures are in compliance with state certified laboratory requirements
- Responsible for training staff in the proper use of field instruments
- Responsible for maintenance of field instruments
- Responsible for ensuring that field parameter check-in/check-out procedures and forms are properly used and are in compliance with state certified laboratory requirements.

Primary Data End-Users

Charlotte Storm Water Services
Steve Jadlocki – Charlotte’s NPDES Phase I Permit Administrator – 704-336-4398

- Responsible for ensuring that all monitoring conducted to fulfill the requirements of Charlotte’s Phase I NPDES permit are completed. MCWQP is under contract with the City of Charlotte to conduct monitoring and other activities.
- Provides parameter lists, sampling schedule and basic requirements of monitoring program
- Reviews data

Mecklenburg County Phase II Jurisdictions
Anthony Roberts – Cornelius Town Manager – 704-892-6031
David Jarrett – Huntersville Public Works Director – 704-875-7007
Ralph Massera - Director of Public Works – 704-847-3640
Brian Welch – Mint Hill Town Manager – 704-545-9726
Mike Rose – Pineville Town Manager – 704-889-4168
Leamon Brice – Davidson Town Manager – 704-892-7591

- MCWQP is under contract with each of Mecklenburg County’s Phase II jurisdictions to provide water quality monitoring services to fulfill requirements of the Phase II permits held by each of the towns.

State of North Carolina
319 Grant Administrator
Alan Clark – NCDENR – 919-733-5083
Clean Water Management Trust Fund Administrator
Bern Schumak – CWMTF – 336-366-3801
MCDWP and Charlotte-Mecklenburg Storm Water Services have received several grants for the installation of BMPs, creation of stream restoration projects, watershed studies and TMDL implementation projects. Each project has specific monitoring requirements to demonstrate the effectiveness of the project. Data are typically reported on an annual basis to each grant’s administrator.

A5. Problem Definition and Background

Introduction

The City of Charlotte and Mecklenburg County are located along a drainage divide between the Catawba River Basin and the Yadkin River Basin. Therefore, approximately 98% of the streams in Charlotte and Mecklenburg County originate within the county borders. Streams located in the western portion of the county, as indicated in the map below, drain to the Catawba River in North Carolina. The Catawba River along the western border of the county has been damned to form Lake Norman, Mountain Island Lake and Lake Wylie. Each of the lakes is utilized for water supply purposes for various communities and industries throughout the region. Streams located in the eastern portion of the county drain to the Yadkin River, which has been designated as potential future habitat for the Carolina Heelsplitter, a federally endangered freshwater mussel. Streams located in the southern portion of the county drain to the Catawba River in South Carolina. These streams drain the most developed portion of Charlotte and Mecklenburg County, which is predominated by the City of Charlotte. Strong development pressure throughout Mecklenburg County has led to increased degradation of surface water from non-point source runoff.

The Mecklenburg County Water Quality Program (MCWQP) was created in 1970 under the umbrella of the Mecklenburg County Health Department. Recently, the MCWQP has been merged with several other entities to form Charlotte-Mecklenburg Storm Water Services. The MCWQP is engaged in water quality monitoring efforts on reservoirs, streams and ponds. Moreover, the MCWQP enforces storm water pollution prevention ordinances, enforces erosion control ordinances, conducts NPDES permit holder inspections and conducts watershed planning. The MCWQP is a storm water fee funded program of the Mecklenburg County Government. Its purpose is to ensure the safety and usability of Mecklenburg County’s surface water resources including; ponds, reservoirs and streams. Stream and lake monitoring are a critical component of ensuring the safety and usability of Mecklenburg County’s surface water resources and elected officials and citizens rely upon communication of the monitoring results to determine the conditions of those resources.

The MCWQP conducts several water quality monitoring programs. These programs include the fixed interval monitoring network (FIM), in-stream storm water monitoring (ISM) program, biological monitoring program (macro invertebrates and fish – these activities are conducted by the Bioassessment Lab), lake monitoring program, best management practice (BMP) monitoring program and bacteriological monitoring. Monitoring sites for the FIM program were located in order to determine the water quality of a particular basin or sub-basin. Figure A5.1 shows the distribution of watersheds in Charlotte and Mecklenburg County. Sites for the BMP program were selected based upon BMP type in order to assess performance of many different types and designs of BMPs. Monitoring sites for the lake monitoring program were selected to determine the general water quality in the three reservoirs of the Catawba and to, more specifically, target swimming areas and areas of intense development.
The MCWQP has created this document to ensure that all data collected conforms to strict QA/QC guidelines in the collection of samples, management of information and communication of results. It is also intended to communicate the policies and procedures of the MCWQP so that data it collects may be considered by other entities in local, regional or national studies.

Stream classifications and water quality standards

The state of North Carolina has developed water quality standards for many parameters dependent upon the classification of the stream. All named water bodies in the state have been classified by intended use. Mecklenburg County has Class B, C and WS IV water bodies. Monitoring results are compared to the water quality standards by MCWQP to determine...
compliance with the standard for communication of results and assessment of the usability of the water for its intended use.

MCWQP Monitoring Program Objectives

There are several objectives of the MCWQP monitoring program; however, the primary objective is to ensure the safety and usability of Mecklenburg County’s surface water resources. Samples are collected to determine compliance with applicable state standards and to locate sources of water quality impairment (such as broken sanitary sewer lines). In addition to safety and usability, the MCWQP collects and analyzes samples to determine the effectiveness of watershed planning efforts (BMP monitoring and habitat assessments).

A6. Project/Task Description and Schedule

The MCWQP and its predecessors have conducted monitoring of Mecklenburg County’s surface waters since the early 1970s. The program has evolved into many different projects with distinct purposes and desired outcomes. A Standard Administrative Procedure (SAP) has been developed for each specific monitoring project conducted by the MCWQP. The SAPs are included with this document as Appendix 2.

Fixed Interval Monitoring Program

The primary focus of the fixed interval monitoring program is to monitor the overall health of the streams within the Charlotte and Mecklenburg County and to identify chronic pollution problems at the watershed scale. The purpose of the program is to provide ongoing baseline data that can be used to determine the long-term condition of Charlotte and Mecklenburg County streams. Fixed Interval monitoring is conducted monthly at 29 sites throughout Mecklenburg County. Sites were located to monitor all of the major watersheds in the County. Monitoring events are typically conducted on the third Wednesday of each month; however, events may be postponed if unsafe conditions exist in the streams.

FIM samples are collected by hand (grab samples) and are delivered to the CMU laboratory in less than 6 hours (fecal coliform hold time). Physical parameters (field parameters) measured at the time of sample collection include temperature, dissolved oxygen, pH and conductivity. These parameters are measured using a YSI Multiprobe instrument, which has sensors for each of the parameters to be measured. Most FIM sites are located at USGS gauging stations and the stage of the stream is recorded from the USGS Internet website. The level of the stream at the time of collection and comments pertaining to the stream flow are noted on the field sheets along with the field parameter readings. Samples are submitted to the CMU laboratory for all other parameters including fecal coliform bacteria, *E-Coli* bacteria, Ammonia Nitrogen (N-NH3), Nitrate + Nitrite (NO2+NO3), Total Kjeldahl Nitrogen (TKN), Total Phosphorus (TP), Suspended Solids (TSS), USGS Suspended Sediment Test (SSC), Turbidity, Copper, Zinc, Chromium and Lead. The sample analysis results along with the physical measurements are used in the calculation of the Stream Use Support Index (SUSI), which is a programmatic level reporting tool developed by Charlotte-Mecklenburg Storm Water Services.

Bacteriological Monitoring Program (Including 5/30 Monitoring)

The primary focus of the bacteriological monitoring program is to identify sources of fecal coliform in Charlotte-Mecklenburg streams. Several of these streams are listed on North
Carolina’s 303(d) list for fecal coliform, which has caused the MCWQP to focus efforts on finding and eliminating sources of fecal coliform. Samples are collected monthly from 72 locations throughout the county during base flow (minimum 72 hours prior without rain) conditions. In addition to the monthly sampling, 5 sites are sampled 5 times per month for fecal coliform. These locations correspond to NC DENR compliance points in watersheds listed for fecal coliform impairment on North Carolina’s 303(d) list. These sites are sampled under all conditions in order to assess compliance with the fecal coliform standard.

Bacteriological samples are collected by hand (grab samples) and are delivered to the CMU laboratory in less than 6 hours (fecal coliform hold time). In addition to the fecal coliform sample, temperature of the stream at the time of sample collection is measured and recorded in the field data sheet.

In-Stream Storm Water Monitoring Program

The primary focus of the in-stream storm water monitoring program is to characterize the quality of receiving streams during rainfall events to support various Charlotte-Mecklenburg water quality projects. Samples are collected during runoff events on a regular basis (2 sites are sampled 2 times per month and 2 sites are sampled monthly for a total of 72 samples).

Automated sampling equipment collects the samples during the runoff event, set to start based upon the level of the stream. A flow-weighted composite sample is compiled by the sampler as prescribed by a site specific program uploaded to the sampler, which is based upon estimations of rainfall and runoff. Individual aliquots are collected at site specific volume (discharge) intervals during a runoff event. After the runoff event has ceased the samplers are retrieved and the sample transferred to sample bottles and turned into the CMU laboratory. Parameters analyzed by the laboratory include N-NH3, NO2+NO3, TKN, TP, TSS, SSC, Turbidity, Copper, Zinc, Chromium and Lead.

Service Request/Emergency Response/Follow-up Monitoring Program

Water quality samples are occasionally collected during investigation of a citizen request for service. Samples may be collected from any location along any stream pond or reservoir within Charlotte and Mecklenburg County. Most of the samples collected are for fecal coliform along with measurements for physical parameters. Typically, samples are collected to “bracket” or otherwise identify a pollution source. Frequently, physical parameters alone are enough to identify a pollution source, which can be visually identified.

TMDL Stream Walk Monitoring Program

The TMDL stream walk program is conducted to identify pollution sources in the streams in Charlotte and Mecklenburg County with existing TMDLs for fecal coliform. Teams of 2 staff members wade or float sections of streams and collect samples from small tributaries, storm water outfalls and drainage ditches for the purpose of identifying whether a source of fecal coliform is located upstream. If fecal coliform is detected in the sample above 3000 c.f.u./100 ml, follow-up activities are initiated to identify and eliminate the source.

Grab samples are collected at each confluence, storm water outfall and drainage ditch exhibiting dry weather flow (stream walks are only performed during dry weather). The samples are submitted to the CMU laboratory no more than 6 hours (hold time for fecal coliform) from the time of sample collection. Samples are analyzed for fecal coliform and nutrients. YSI
multiprobes are used to collect field measurements for turbidity, dissolved oxygen, turbidity, pH and temperature. Field tests are also performed to detect the presence of chlorine.

BMP Monitoring Program

The monitoring of BMP’s is conducted to research the effectiveness of various kinds of BMP, such as bioretention, storm water wetlands, wet ponds, grassed swales and dry detention basins. BMPs are installed to improve the quality of urban storm water runoff before the water entering local streams and lakes. Monitoring is conducted using automatic sampling equipment during rain events (similar to in-stream monitoring). Physical and chemical monitoring takes place at both the inlets and outlets of these BMPs to determine their pollutant removal efficiency. Flow into and out of the device is usually assessed using a bubbler meter or Doppler flow meter.

Automated sampling equipment collects the samples during the runoff event, set to start based upon the initiation of runoff. A flow-weighted composite sample is compiled by the sampler as prescribed by a site specific program uploaded to the sampler, which is based upon estimations of rainfall and runoff. Individual aliquots are collected at site specific discharge intervals during a runoff event. After the runoff event has ceased the samplers are retrieved and the sample transferred to sample bottles and turned into the CMU laboratory. Parameters analyzed by the laboratory include N-NH3, NO2+NO3, TKN, TP, TSS, SSC, Turbidity, Copper, Zinc, Chromium and Lead.

Lake Monitoring Program

The reservoirs comprising Mecklenburg County’s western border are monitored on a routine basis to assess their and usability for water supply and recreation. Samples are collected more frequently in the summer months when recreational use of the reservoirs increases.

Grab samples and depth integrated samples are collected from various locations throughout the reservoirs. Physical parameters are measured throughout the water column for temperature, DO, Specific Conductivity, turbidity and pH, as well as in situ chlorophyll a. Secchi Depth is also recorded at each sample collection site. Samples are submitted to the CMU laboratory for several parameters including NO3-N, Total Phosphorus, Alkalinity, and Chlorophyll-a. From nine of these parameters, a WQI rating is determined, which summarizes the overall quality of the water. The WQI values are primarily used to communicate the overall lake water quality conditions to the citizens of Mecklenburg County. Several of the local marine commissions utilize the WQI values in their evaluations of reservoir conditions.

Industrial Facility Monitoring Program

The industrial facility monitoring program is conducted to satisfy an element of the City of Charlotte’s Phase I NPDES permit. Samples are collected from industrial facilities during runoff events where previous inspections have identified poor material handling or storage practices at the site. Only sites with NPDES permits are inspected and sampled. Typically, approximately 15 sites are sampled each year.

Grab samples are collected from storm water outfalls or drainage swales during runoff events. Special care is taken to ensure the runoff sampled originated from the site or facility in question. Field measurements are collected using a YSI multiprobe for dissolved oxygen, pH, temperature and conductivity. Samples are submitted to the CMU laboratory to be analyzed for fecal coliform, E-coli bacteria, N-NH3, NO2+NO3, TKN, TP, TSS, SSC, Turbidity, Copper, Zinc,
Chromium and Lead and any other parameters specifically identified in a facilities’ NPDES discharge permit (if one exists). Additional parameters may be added to the list of analytes if those materials are suspected to be stored or used on site.

Continuous Monitoring and Alert Notification Network

The Continuous Monitoring and Alert Notification Network (CMANN) program along with the NC DOT Long Creek project are a system of automated monitoring units used to detect illicit connections and other in-stream pollution sources. The units are semi-permanently installed at locations throughout Charlotte and Mecklenburg County, typically at USGS stream flow gauging stations corresponding to FIM sites. The units continuously monitor the stream for pH, turbidity, DO, conductivity and temperature and transmit the readings via cell modem to a database server housed and maintained by a private vendor (NIVIS). The data collected for the Long Creek DOT project is maintained on an in-house server. The data is then accessible through a website. The system also has an alert notification component, which sends specified individuals email messages when certain parameter thresholds have been exceeded.

Goose Creek Recovery Program Monitoring

Water quality monitoring for fulfillment of the Goose Creek Recovery Program is comprised of 3 elements; fecal coliform monitoring at NC DENR compliance points, land-use monitoring for fecal coliform and stream walks to identify sources of fecal coliform. Compliance point monitoring is covered under the bacteriological monitoring program (5 samples collected in 30 days) and the stream walks are covered under the TMDL stream walk monitoring program. The land-use monitoring is a requirement of the Goose Creek Recovery Program intended to categorize the amount of fecal coliform produced by various land-uses in the Goose Creek Watershed. Land uses to be monitored during FY07-08 are 0.25 – 0.5 acre residential, commercial, institutional, 0.5 – 1 acre residential and I-485.

Grab samples are collected from storm water outfalls or drainage swales during runoff events from each individual land-use. Special care is taken to ensure the runoff sampled originated from the land-use in question. Field measurements are collected using a thermometer for temperature. Samples are submitted to the CMU laboratory to be analyzed for fecal coliform. Estimates of rainfall depth for each runoff event sampled are obtained from the nearest USGS rain gauge.

Biological Monitoring

Biological monitoring is performed at 48 stream sites throughout Charlotte and Mecklenburg County. Macro invertebrate samples are collected and habitat assessments are performed at all 48 sites. Fish population samples are collected at 8 sites. Biological sampling and analysis is conducted by the Mecklenburg County Bioassessment Laboratory under a Standard Operating Procedure submitted to NC DENR and accepted in 2004. Biological monitoring is included in this QAPP to document sampling locations and data reporting mechanisms.

Sampling Schedule

Each of the monitoring projects has a specific sampling schedule. The individual project sampling schedule by program element and by site is provided in the SAP, which are in Appendix 2. The following is a general discussion of the sampling interval for each monitoring project.

Fixed Interval Monitoring Program
Samples under the FIM program are collected the third Wednesday of each month. This results in 12 samples per year per site. The FIM monitoring program is intended to provide long-term data on the health of stream water quality at the watershed scale; however SUSI values are calculated from the results on a monthly basis.

Bacteriological Monitoring Program (Including 5/30 Monitoring)

The bacteriological monitoring program is intended to provide short term data on the presence of sources of fecal coliform in the streams of Charlotte and Mecklenburg County. The sites are sampled once per month, usually during the first available sampling day with a minimum of 72 hours without rainfall preceding. The reason for the 72 hours preceding is to ensure base flow conditions in the streams. An additional component of the bacteriological monitoring program is to collect five fecal coliform samples during any given 30 day period at NC DENR TMDL compliance points within watersheds with fecal coliform TMDL implementation strategies in place. The purpose of this component is to assess the effectiveness of the implementation strategies. Typically, one sample will be collected during each of the four weeks during a month with an additional sample collected during the third week of the month.

In-Stream Storm Water Monitoring Program

The ISM program is intended to provide information on the characteristics of stream flow during runoff events in the City of Charlotte. This monitoring used to support various watershed and BMP projects within Charlotte and Mecklenburg County. Monitoring is conducted quarterly during a runoff event with a minimum of 72 hours dry weather preceding.

Service Request/Emergency Response/Follow-up Monitoring Program

The SR/ER/follow-up monitoring program is intended to provide information during the investigation of a water quality pollution source. As such, it is performed on an as needed basis to attempt to ‘bracket’ or locate a pollution source. Many samples or field measurements may be performed over a very short time period to locate a pollution source.

TMDL Stream Walk Monitoring Program

The TMDL stream walk monitoring program is intended to provide information on sources of fecal coliform impairment in Mecklenburg County streams. Stream walks are performed year round with the only requirement being safety (walks are not performed during swift water conditions). No set schedule is in place for conducting stream walks, rather a goal of the number of miles to be walked during a given year is set. The project officer is responsible for setting a loose schedule with milestones of the number of miles to be walked during a given quarter (3 month period).

BMP Monitoring Program

The BMP Monitoring program is intended to provide information on the efficiency of various BMPs at removing water quality pollutants from runoff. A total of 12 samples are typically collected from the inflow and outflow of each BMP in the program during each year during runoff events. An effort is made to spread sample collection across all seasons; however extended dry periods are unavoidable.
Lake Monitoring Program

The lake monitoring program has been designed to provide data on the long term water quality conditions in Lake Norman, Mountain Island Lake and Lake Wylie and to provide short term information on the usability of these lakes for recreation (swimming). Samples are collected monthly during the warm months (May – September) and every other month during the colder months. Additional fecal coliform sampling sites are monitored from May through September to coincide with peak usage time on the lakes.

Industrial Facility Monitoring Program

The industrial facility monitoring program is designed to assess the runoff from individual NPDES Discharge Permitted facilities. Samples are collected during a runoff event once during the fiscal year in which the facility is inspected. If water quality standards or permit limits are exceeded, additional sampling may be initiated under the follow-up monitoring program.

Continuous Monitoring and Automated Notification Network

The CMANN program has been designed to provide real time (or near real time) data on the health of Charlotte and Mecklenburg county’s streams. Field measurements are automatically collected once per hour, year round. Collection intervals are occasionally temporarily reduced to once per 15 minutes if necessary.

Goose Creek Recovery Program Monitoring

The Goose Creek recovery program monitoring effort is a requirement of the Goose Creek Water Quality Recovery Program for fecal coliform. The TMDL stream walks in Goose Creek are covered under the TMDL stream walks section, the 5/30 monitoring and compliance point monitoring are covered under the bacteriological monitoring section. Land-use samples are collected 12 times per year from each site during runoff events. An effort is made to spread the samples out evenly over each of the four seasons during a year; however extended dry periods may make monthly sampling impractical.

Biological Monitoring

Typically biological samples are collected once per year during the period of time between May and September; however occasionally samples are collected in October because of scheduling issues. Samples are collected during base flow conditions.

Measurement methods overview

Field Measurements

Measurements made in the field include water temperature, specific conductance, stream flow (or pipe flow), chlorine, Secchi depth, DO, turbidity and pH. Field measurements are discrete and are to be made in situ by field staff at the time of sample collection. All field activities are to be performed in accordance with the YSI Multiprobe Calibration and Field Data Collection (Short-term Deployment) SOP, which is included in Appendix 3.

Analytical Methods
Samples are submitted to the CMU laboratory for analysis for fecal coliform bacteria, *E-coli* bacteria, ammonia nitrogen, nitrate + nitrite, TKN, total phosphorus, TSS, suspended sediment, turbidity (lab), copper, zinc, chromium and lead. Other specific parameters may be analyzed on a case by case basis (such as industrial sampling).

Data management

All results are to be sent to the QA/QC officer, who is responsible for the compilation, review, verification, validation, and warehousing of all water quality monitoring data products by the MCWQP. Field staff provides completed field data sheets and copies of COCs to the QA/QC officer on the same day the samples and field measurements are collected. The CMU laboratory will provide finalized data electronically and in hard copy to the QA/QC officer within 45 days of sample collection. The only exception to this is the CMANN program. CMANN data is reviewed and quality assured by the CMANN project officer and submitted to the QA/QC officer electronically.

On at least a monthly basis, data will be compiled, quality assured and added to the Water Quality Data Repository (WQDR).

Reporting

Annual Reports

Annual reports are prepared for each monitoring program (specifically, an annual report for each program element will be prepared – most monitoring programs are comprised of several program elements). At a minimum, the annual report will include basic descriptive statistics (minimum, maximum, median, 25th percentile and 75th percentile) of the sample results from the CMU laboratory and the field measurements collected under the program. Additionally, a count of the number of action/watch and state standard exceedances are prepared for each parameter analyzed or measured. Current year results are compared to previous years and, where applicable, water quality trends are identified. These reports are submitted to the customer and are available to citizens and outside agencies by contacting Rusty Rozzelle at 704-336-5449 or rusty.rozzelle@mecklenburgcountync.gov.

Water Quality Indexes and Program Measures

Two primary indexes are calculated using MCWQP monitoring results and subsequently reported to elected officials and the citizens of Mecklenburg County. The Stream Use Support Index (SUSI) is an index developed by Charlotte/Mecklenburg Storm Water Services to communicate the health of Mecklenburg County’s streams. It takes into account FIM, biological monitoring and CMANN results. The lake water quality index (LWQI) is calculated for each of the reservoirs in Mecklenburg County. The LWQI takes into account lab analysis and physical parameters of lake water quality. Documentation of both indexes is included with this document in Appendix 4. Several other program measures use results from water quality data collection for their calculation. These are described in Appendix 5.

Program Indicators

Several program indicators are also calculated using MCWQP data. Program indicators are used to assess MCWQP progress toward meeting programmatic goals, which are required by the Mecklenburg County Manager. They are part of the county manager’s M4R program. Goals are
set for each program indicator at the beginning of each fiscal year and progress on meeting the goal is determined at the end of the fiscal year. These results are used by the county manager to judge the effectiveness of the MCWQP. The indicators include miles suitable for human contact, assessment of TMDL implementation strategies and turbidity levels in McDowell Creek. A description of the program indicators determined from water quality monitoring is included in Appendix 4 and Appendix 5.

A7. Quality Objectives and Criteria

Precision, accuracy and sensitivity

Results from the MCWQP monitoring program are compared to the NC water quality standards and internal action/watch levels (Appendix 6), so reporting limits for these parameters should be at or below these critical values. All of the reporting limits used by the CMU Laboratory meet these criteria.

Bias

The MCWQP monitoring program is based in judgmental sampling design, so by definition bias will exist due to station locations. However, this is acceptable given that stations are generally established for targeted long term monitoring of known or suspected areas of concern; identification of temporal patterns at these static locations are major objective or the program.

Other sources of bias include:

- Grab sampling is performed only during the weekly business day.
- Stations are only sampled on Monday – Thursday.
- Almost all stations are located at road crossings.

Use of consistent sampling methods, SOPs, and analytical methods minimizes bias from other sources.

Representativeness

Environmental monitoring data generally show high variation due to natural conditions such as precipitation, seasonal and diurnal patterns, and biological activity. It is important to ensure that the variations over time and/or space that are seen in the results are truly representative of the system under study. Monitored water bodies must have sufficient flow year-round at the specified sampling point to allow for the sampling of well-mixed areas (as required by SOP) of the water body. Sampling of BMPs must focus upon representative (or average) storm events within the device’s design standard. This allows the samples to represent an “average” condition of the water body at that point in time. Careful selection of station locations on larger perennial water bodies (higher-order streams and rivers, estuaries, and reservoirs) allows representative samples to be obtained year-round.

Comparability

Fixed station locations and standardized operating procedures for sampling and analytical methods ensure that comparable samples are taken at each site visit.

Completeness
It is expected that some site visits or samples will be missed due to problems such as inclement weather, temporary station inaccessibility due to bridge construction, equipment problems, and staff issues such as illness or vacant positions. Many of these impediments are unavoidable. However, under anything but extraordinary circumstances it is expected that at least 90% of scheduled station visits and samples be completed annually.

A8. Special Training/Certification

Field Staff

Since new employees can vary greatly in their background, experience, and knowledge, field staff’s direct supervisor should determine training needs on a case-by-case basis and ensure that these needs are met. At the time of hiring, each field staff member is assessed by a Group Supervisor and provided with an appropriate amount of training specific to their assignments. At a minimum, all field staff are to be trained in the methods described in the appropriate SOPs (Appendix 3), this QAPP, and the appropriate SAPs (Appendix 2) pertinent to their work plan (assigned tasks). Every new field employee will be trained in YSI calibration, safety, required documentation, sampling methods, sample handling, safety and other field activities. Training activities at time of hire are documented on the Employee Training Form, which is included in this document at Appendix 7. This training is generally performed by Senior Environmental Specialists, Group Supervisors and experienced Environmental Specialists. This is augmented by the QA/QC Officer, particularly concerning data management, documentation and problem identification. Completed Employee Training Forms are retained by the QA/QC Officer during the employee’s term of employment with MCWQP. Experienced field staff will continue to accompany all new field staff during sampling activities until the new staff member exhibits proficiency in the field, as determined by the trainer’s observations.

After initial training at the time of hire, refresher training is conducted at least annually for all monitoring activities. A sign-in sheet is circulated at the time of annual training. Staff not present at the training are responsible for scheduling make up training with the trainer. Sign-in sheets will be retained by the QA/QC Officer. At a minimum, each field staff member will receive the following refresher training annually:

- YSI Calibration and Operation
- Grab sample collection
- Proper sample documentation (COC and field data sheets)
- Bacteriological sample collection

Field staff are assessed on an ongoing basis by the direct supervisor and the QA/QC Officer to ensure field staff are performing activities in accordance with SOPs, SAPs and this QAPP. Results of the field audits are retained by the QA/QC Officer for each project and employee.

Laboratory (analytical) staff

All analytical samples are submitted to the CMU Laboratory, which is a North Carolina certified analytical lab. CMU Laboratory staff training is performed in accordance with the requirements inherent in this Certification. If another laboratory is used, it must have North Carolina certification for all analysis performed.

A9. Documentation and Records
Quality assurance information, SOPs, and other support documentation

Once all approval signatures have been obtained, the QA/QC Officer will electronically distribute copies of the approved QAPP to persons on the distribution list in Section A3 of this document. Copies must be disseminated within 30 days of final approval. The original hard copy with approval signatures will be kept on file in the QA/QC Officer’s office at the Hal Marshall Center, 700 North Tryon Street, Charlotte, NC 28202.

The QA/QC Officer is to be notified of changes made to SOPs, SAPs, analytical methods, or any other documentation referenced by this QAPP. The QA/QC Officer will then be responsible for distributing the information, as described above. The QA/QC Officer will also be responsible for keeping current copies of all these documents on file at the Hal Marshall Center (address above). Since the MCWQP monitoring program is ongoing, this QAPP will be reviewed on at least an annual basis by the QA/QC officer, and, if appropriate, any changes or updates made at that time. However, critical revisions can be made at any time. The QA/QC Officer is responsible for completing revisions, obtaining signatures of approval, and disseminating the revised document to those on the distribution list within 30 days of final approval. The version or revision number and date shall be easily identifiable by the document control information on each page. A complete list of all revisions/updates will be provided with each annual update.

Program records

The records produced by the MCWQP monitoring program, their location, retention time, format, and disposition at the end of the required retention time are summarized in Table A9.1.

<table>
<thead>
<tr>
<th>Program Records</th>
<th>Minimum Retention Time</th>
<th>Format</th>
<th>Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>QA/QC Officer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field data sheets</td>
<td>5 years</td>
<td>Hard copy</td>
<td>TBD</td>
</tr>
<tr>
<td>Field data electronic</td>
<td>5 years</td>
<td>SQL</td>
<td>TBD</td>
</tr>
<tr>
<td>Analytical Reports – hard copy</td>
<td>5 years</td>
<td>Hard copy</td>
<td>TBD</td>
</tr>
<tr>
<td>Analytical Reports – electronic</td>
<td>5 years</td>
<td>SQL</td>
<td>TBD</td>
</tr>
<tr>
<td>CMANN Data electronic submittals</td>
<td>5 years</td>
<td>SQL</td>
<td>TBD</td>
</tr>
<tr>
<td>CMU Laboratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical Reports – hard copy</td>
<td>5 years</td>
<td>Hard Copy</td>
<td>TBD</td>
</tr>
<tr>
<td>Analytical data - electronic</td>
<td>5 years</td>
<td>SQL</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Data assessment reports

An annual assessment of the monitoring data generated by the MCWQP is prepared annually. It is prepared to document issues with the previous year’s data set and to document format, data qualifiers and any know issues that may affect the quality of the year’s dataset.
SECTION B: DATA GENERATION AND ACQUISITION
B1. Sampling Process Design

The design of the MCWQP monitoring program is based upon specific project requirements. Each project has unique goals and criteria, therefore each project will be addressed in turn.

Fixed Interval Monitoring

The FIM program was designed as a long-term, watershed scale monitoring project. Portions of the FIM network of stations have been in existence since the 1970s. There are currently 29 monitoring stations throughout Charlotte and Mecklenburg County.

Station Locations

Stations are established at publicly accessible, fixed locations, generally at bridge crossings. Locations and their latitude and longitude were originally identified using USGS topographic maps or ESRI GIS software. Stations are strategically located to monitor a specific watershed. The following criteria were considered during the site selection process:

- Sites must drain at least 6 square miles. There has been much speculation regarding the ability of 1st order streams to support diverse macro invertebrate and fish populations. In order to ensure comparability of all results, sites draining less than 6 square miles have been excluded.
- Fairly uniform coverage of all Watersheds. Sites were not focused up and downstream of treatment plants, nor were they place at restoration or BMP sites.
- Sites with established USGS Stream Gages were given greater importance.
- Sites corresponding to NC-DENR compliance points were given greater importance.
- Single geographic features, such as the Charlotte Douglas Airport were not given greater importance.

A complete current site list and site map is provided in the Fixed Interval Monitoring SAP, which is included with this document as Appendix 2.

Many of the current stations have been active for over 15 years and the focus on long-term data is integral to identifying temporal patterns within a watershed and to gaining an understanding of the variability within each system. Consequently, requests from MCWQP staff for station establishment and/or discontinuation will be assessed on the value gained from a long-term perspective. Changes to station locations and sampling regimens may be made with sufficient reason, such as:

- Safety concerns of field staff
- Other changes to location accessibility
- The reason for sampling is no longer valid (i.e., a discontinued discharge)
- Emergence of new water quality concerns
- Resource constraints, particularly funding
- Redundancy
If any of these concerns arise, the QA/QC Officer, project officer and program manager will collectively decide if it is appropriate for a station to be discontinued, moved or added. Actual sampling points are generally mid-channel, or as determined by field staff as representative of the water body:

- Flow should be significant enough to ensure a relatively well-mixed, homogenous sample
- Outside of effluent mixing zones
- Not directly below large amounts of debris or other temporary impoundments

Indicators measured and sampling frequency

The selection of indicators is primarily focused on those with NC water quality standards that can be cost-effectively analyzed. Additional indicators are also included that may not have specific standards associated with them but are useful for interpretation of other measurements. Others, such as specific conductance are of themselves useful for identifying long-term trends. A summary of standards by stream classification is included in Appendix 6.

Field staff are encouraged to use their discretion to sample for any additional indicators they feel may be of concern due to unusual circumstances encountered on a station visit. All measurements and samples are taken on whole water samples, i.e., no analyses for dissolved fractions are performed. The Fixed Interval Monitoring SAP (Appendix 2) lists the frequency of measurement and the indicators measured.

Sampling and measurements

Field measurements and samples are taken and handled in accordance with the Fixed Interval Monitoring SAP, which references the appropriate SOPs.

Bacteriological Monitoring Program (Including 5/30 Monitoring)

The bacteriological monitoring program was designed as a short-term, base flow, watershed and catchments’ scale monitoring project focused on identifying sources of fecal coliform.

Station Locations

Stations are typically established at publicly accessible, fixed locations, generally at bridge crossings. Locations and their latitude and longitude were originally identified using USGS topographic maps or ESRI GIS software. Stations are strategically located to monitor a specific watershed, catchment or known source of fecal coliform (such as a WWTP effluent). The following criteria were considered during the site selection process:

- Fairly uniform coverage of all watersheds.
- Sites with established USGS Stream Gages were given greater importance.
- Sites corresponding to NC-DENR compliance points were given greater importance.

A complete current site list and site map is provided in the Bacteriological Monitoring Program SAP, which is included with this document as Appendix 2.
The short term nature of the bacteriological monitoring program necessitates that sites move frequently and are added and subtracted. Generally, the network is stable during an entire fiscal year, however mid-year changes do occur. Changes to station locations and sampling regimens may be made with sufficient reason, such as:

- Suspected source of fecal coliform
- Changes to location accessibility
- The reason for sampling is no longer valid (i.e., a discontinued discharge)
- Emergence of new water quality concerns
- Resource constraints, particularly funding
- Redundancy

If any of these concerns arise, the QA/QC Officer, project officer and program manager will collectively decide if it is appropriate for a station to be discontinued, moved or added. Actual sampling points are generally mid-channel, or as determined by field staff as representative of the water body:

- Flow should be significant enough to ensure a relatively well-mixed, homogenous sample
- Outside of effluent mixing zones
- Upstream side of bridge whenever possible
- Not directly below large amounts of debris or other temporary impoundments

Indicators measured and sampling frequency

The only routine indicator monitored for the Bacteriological Program is fecal Coliform, however *E. coli* is monitored at all TMDL compliance points. The fecal coliform standard by stream classification is included in Appendix 6. There currently is no state water quality standard for *E. coli*, however the samples are collected and analyzed with the expectation that a standard is forthcoming.

Field staff are encouraged to use their discretion to sample for any additional indicators they feel may be of concern due to unusual circumstances encountered on a station visit.

All measurements and samples are taken on whole water samples, i.e., no analyses for dissolved fractions are performed. The Fixed Interval Monitoring SAP (Appendix 2) lists the frequency of measurement and the indicators measured.

Sampling and measurements

Field measurements and samples are taken and handled in accordance with the Bacteriological Monitoring SAP, which references the appropriate SOPs.

In-Stream Storm Water Monitoring Program

The ISM program was designed to assess the impacts of non-point source pollution on stream water quality. Portions of the ISM network of stations have been in existence since the mid 1990’s. There are currently 4 monitoring stations in the City of Charlotte.

Station Locations
Stations are established at publicly accessible, fixed locations, generally at bridge crossings. It is a requirement that ISM stations be located at USGS stream gauging stations. Locations and their latitude and longitude were originally identified using USGS topographic maps or ESRI GIS software. Stations are strategically located to monitor a specific watershed or development.

A complete current site list and site map is provided in the In-stream Monitoring SAP, which is included with this document as Appendix 2.

Requests from MCWQP staff for station establishment and/or discontinuation of a site will be assessed on the value gained from a long-term perspective. Changes to station locations and sampling regimens may be made with sufficient reason, such as:

- Safety concerns of field staff
- Other changes to location accessibility
- The reason for sampling is no longer valid (i.e., a discontinued discharge)
- Emergence of new water quality concerns
- Resource constraints, particularly funding
- Redundancy
- Changes to program needs or direction

If any of these concerns arise, the QA/QC Officer, project officer and program manager will collectively decide if it is appropriate for a station to be discontinued, moved or added. Samples are collected automatically using ISCO samplers. Actual sampling points (tubing influent) are generally mid-channel, or as determined by field staff as representative of the water body:

- Flow should be significant enough to ensure a relatively well-mixed, homogenous sample
- Outside of effluent mixing zones
- Upstream side of bridge whenever possible
- Not directly below large amounts of debris or other temporary impoundments

Indicators measured and sampling frequency

The selection of indicators is primarily focused on those with NC water quality standards that can be cost-effectively analyzed. Additional indicators are also included that may not have specific standards associated with them but are useful for interpretation of other measurements. Others, such as specific conductance are of themselves useful for identifying long-term trends. A summary of standards by stream classification is included in Appendix 6.

Field staff are encouraged to use their discretion to sample for any additional indicators they feel may be of concern due to unusual circumstances encountered on a station visit.

All measurements and samples are taken on whole water samples, i.e., no analyses for dissolved fractions are performed. The In-stream Monitoring SAP (Appendix 2) lists the frequency of measurement and the indicators measured.

Sampling and measurements

Field measurements and samples are taken and handled in accordance with the In-stream Monitoring SAP, which references the appropriate SOPs.
Service Request/Emergency Response/Follow-up Monitoring Program

The service request monitoring program was designed as a short term, catchment scale monitoring project. The service request monitoring program is designed to identify active sources of water quality pollution.

Station Locations

There is no established network of sites or sampling locations. Sites are sampled based solely on the discretion of the field staff engaged in the investigation. An attempt is made to ‘bracket’ or narrow down the possible sources of a pollution problem through intensive sampling in the immediate vicinity of a suspected pollution source. Typically, service request monitoring is initiated after a citizen complaint or discovery of an action/watch exceedance from the FIM or bacteriological monitoring programs.

Stations are established by field staff as field conditions necessitate. Locations and their latitude and longitude are generally determined using GPS units or ESRI GIS software.

Indicators measured and sampling frequency

The selection of indicators is primarily focused on those suspected of being released to surface water by the pollution source. Field staff determine indicators based upon professional judgment and knowledge of the incident (action/watch report or citizen provided information).

Sampling and measurements

Field measurements and samples are taken and handled in accordance with the Service Request Monitoring SAP, which references the appropriate SOPs.

TMDL Stream Walk Monitoring Program

The TMDL stream walk monitoring program was designed as a short term, catchment scale monitoring project. The program is designed to identify active sources of fecal coliform in TMDL watersheds.

Station Locations

There is no established network of sites or sampling locations. Sites are sampled based solely on the discretion of the field staff engaged in the investigation and guidance provided in the TMDL Stream Walk SAP (Appendix 2). Typically, all tributaries and storm water outfalls and swales encountered during a TMDL stream walk are sampled. Other suspected sources, such as straight pipes, are also sampled.

Stations are established by field staff as field conditions necessitate. Locations and their latitude and longitude are generally determined using GPS units or ESRI GIS software.

Indicators measured and sampling frequency

The indicators measured are listed in the TMDL Stream Walk Monitoring SAP (Appendix 2).
Sampling and measurements

Field measurements and samples are taken and handled in accordance with the TMDL Stream Walk Monitoring SAP (Appendix 2), which references the appropriate SOPs.

BMP Monitoring Program

The BMP monitoring program was designed as a short term, individual device scale monitoring project. The program is designed to characterize the pollution removal efficiency of certain BMPs in Charlotte, NC. Currently there are 18 BMP devices being monitoring.

Station Locations

There is no established network of sites or sampling locations. BMPs are generally selected for sampling by Charlotte Storm Water Services. Factors such as upstream land-use, impervious area and drainage area size are considered. A complete list of the sites sampled is included in the BMP Monitoring Program SAP, which is included in Appendix 2. BMP locations and their latitude and longitude are generally determined using GPS units or ESRI GIS software.

Indicators measured and sampling frequency

The indicators measured are listed in the BMP Monitoring Program SAP (Appendix 2).

Sampling and measurements

Field measurements and samples are taken and handled in accordance with the BMP Monitoring Program SAP (Appendix 2), which references the appropriate SOPs.

Lake Monitoring Program

The lake monitoring program was designed as a long-term and short term watershed scale monitoring project. Portions of the lake monitoring network of stations have been in existence since the 1970s. There are currently 32 monitoring stations in the five impoundments (3 reservoirs) of the Catawba River in Mecklenburg County. Stations are visited at the regular intervals outlined in the Lake Monitoring Program SAP (Appendix 2).

Station Locations

Most lake stations are established at publicly accessible, fixed locations that are accessible by boat. However, in several instances where launching a boat is problematic, samples are collected off of the end of private docks (Lake Cornelius and Lake Davidson primarily). Locations and their latitude and longitude were originally identified using USGS topographic maps or ESRI GIS software. Stations are strategically located to monitor a specific section or cove of a reservoir or impoundment. The following criteria were considered during the site selection process:

- Sites should be indicative of overall water quality.
- Sites should be located along the primary flow path through the reservoir. Additionally, sites should be located in major coves along the Mecklenburg County shoreline.
A complete current site list and site map is provided in the Lake Monitoring SAP, which is included with this document as Appendix 2.

Many of the current stations have been active for over 30 years and the focus on long-term data is integral to identifying temporal patterns within a reservoir and to gaining an understanding of the variability within each system. Consequently, requests from MCWQP staff for station establishment and/or discontinuation will be assessed on the value gained from a long-term perspective. Changes to station locations and sampling regimens may be made with sufficient reason, such as:

- Safety concerns of field staff
- Other changes to location accessibility
- The reason for sampling is no longer valid (i.e., a discontinued discharge)
- Emergence of new water quality concerns
- Resource constraints, particularly funding
- Redundancy

If any of these concerns arise, the QA/QC Officer, project officer and program manager will collectively decide if it is appropriate for a station to be discontinued, moved or added. Actual sampling points may be in open water, coves, or near the confluence with tributaries of interest that enter the reservoir at points determined by field staff as representative of the water body or subsection of the water body.

Indicators measured and sampling frequency

The selection of indicators is primarily focused on those with NC water quality standards that can be cost-effectively analyzed. Additional indicators are also included that may not have specific standards associated with them but are useful for interpretation of other measurements. Others, such as Secchi depth are of themselves useful for identifying long-term trends. A summary of standards by stream classification is included in Appendix 6.

Field staff are encouraged to use their discretion to sample for any additional indicators they feel may be of concern due to unusual circumstances encountered on a station visit. All measurements and samples are taken on whole water samples, i.e., no analyses for dissolved fractions are performed. The Lake Monitoring Program SAP (Appendix 2) lists the frequency of measurement and the indicators measured.

Sampling and measurements

Field measurements and samples are taken and handled in accordance with the lake monitoring SAP, which references the appropriate SOPs.

Industrial Facility Monitoring Program

The industrial facility monitoring program was designed as a short term, site scale monitoring project to determine an NPDES discharge permit holder’s compliance with state water quality standards and permit requirements.

Station Locations
There is no established network of sites or sampling locations. Sampling locations are situated at sites with poor material handling and housekeeping procedures discovered during the industrial inspection program. Sites are usually storm water outfalls conveying runoff from the industrial facility in question. Stations are established by field staff as field conditions necessitate. Locations and their latitude and longitude are generally determined using GPS units or ESRI GIS software.

Indicators measured and sampling frequency

The selection of indicators is primarily focused on those suspected of being released to surface water by the industrial facility in question. At a minimum, indicators identified in the NPDES discharge permit are selected. Field staff determines additional indicators based upon professional judgment and knowledge of the industrial facility (generally, the staff member completing the industrial inspection will collect the samples from the site runoff).

Sampling and measurements

Field measurements and samples are taken and handled in accordance with the Industrial Facility Monitoring SAP, which references the appropriate SOPs.

Continuous Monitoring and Automated Notification Network

The CMANN program was designed as a short-term, watershed and catchment scale monitoring project to identify sources of pollution in Charlotte and Mecklenburg County Streams. Subsequently, the program has evolved into a long-term project with 39 stations (4 mobile stations and 35 fixed stations) used to identify water quality trends for the parameters measured.

Station Locations

Fixed stations are established at publicly accessible, fixed locations, generally at bridge crossings. Locations and their latitude and longitude were originally identified using USGS topographic maps or ESRI GIS software. Stations are strategically located to monitor a specific watershed. The following criteria were considered during the site selection process:

- Fairly uniform coverage of all watersheds. Sites were not focused up and downstream of treatment plants, nor were they place at restoration or BMP sites.

- Sites with established USGS Stream Gages were given greater importance.

- Sites corresponding to NC-DENR compliance points were given greater importance.

Mobile stations are established downstream of suspected sources of water quality pollutants. By nature, these locations are moved frequently (approximately monthly) to monitor other suspected sources of surface water pollution.

A complete current site list and site map is provided in the CMANN SAP, which is included with this document as Appendix 2.

Many of the current fixed stations have been active for over 2 years and the focus on long-term data is integral to identifying temporal patterns within a watershed and to gaining an understanding of the variability within each system. Consequently, requests from MCWQP staff
for station establishment and/or discontinuation will be assessed on the value gained from a long-term perspective. Changes to station locations and sampling regimens may be made with sufficient reason, such as:

- Safety concerns of field staff
- Other changes to location accessibility
- The reason for sampling is no longer valid (i.e., a discontinued discharge)
- Emergence of new water quality concerns
- Resource constraints, particularly funding
- Redundancy

If any of these concerns arise, the QA/QC Officer, project officer and program manager will collectively decide if it is appropriate for a station to be discontinued, moved or added. Actual sampling points are generally mid-channel, or as determined by field staff as representative of the water body:

- Flow should be significant enough to ensure a relatively well-mixed, homogenous sample
- Outside of effluent mixing zones
- Upstream side of bridge whenever possible
- Not directly below large amounts of debris or other temporary impoundments

Mobile stations can be moved at the discretion of field staff to locations downstream of suspected sources of surface water pollution.

Indicators measured and sampling frequency

The nature of the equipment limits the indicators to field measurements (conductivity, pH, turbidity, temperature and DO). A summary of standards by stream classification is included in Appendix 2.

The CMANN SAP (Appendix 2) lists the frequency of measurement.

Sampling and measurements

Measurements are collected in accordance with the CMANN SAP, which references the appropriate SOPs.

Goose Creek Recovery Program Monitoring

The Goose Creek Recovery program was designed as a long-term, catchment scale monitoring project to characterize the fecal coliform loading rates of certain land-uses in the Goose Creek Watershed. The monitoring sites are to be established during FY07-08.

Station Locations

Stations are established at publicly accessible, fixed locations, generally at storm water outfalls. Locations and their latitude and longitude will be identified using GPS units or ESRI GIS software. Stations are strategically located to monitor a specific land-use. Monitoring stations will be located downstream of specific land-uses, including: 0.25 – 0.5 acre residential, commercial, institutional, 0.5 – 1 acre residential and I-485.
A complete current site list and site map is provided in the Goose Creek Recovery Program SAP, which is included with this document as Appendix 2.

Requests from MCWQP staff for station establishment and/or discontinuation of monitoring stations will be assessed on the value gained from a land-use characterization perspective. Changes to station locations and sampling regimens may be made with sufficient reason, such as:

- Safety concerns of field staff
- Other changes to location accessibility
- The reason for sampling is no longer valid (i.e., a discontinued discharge)
- Resource constraints, particularly funding
- Redundancy

If any of these concerns arise, the QA/QC Officer, project officer and program manager will collectively decide if it is appropriate for a station to be discontinued, moved or added. Actual sampling points are generally end of pipe, or as determined by field staff as representative of the runoff from the land-use.

Indicators measured and sampling frequency

The only indicator is fecal coliform bacteria.

The Goose Creek Recovery Program SAP (Appendix 2) lists the frequency of measurement and the indicators measured.

Sampling and measurements

Field measurements and samples are taken and handled in accordance with the Fixed Interval Monitoring SAP, which references the appropriate SOPs.

Biological Monitoring

The biological monitoring program was designed as a long-term, watershed scale monitoring project. Portions of the biological monitoring network of stations have been in existence since the 1980s. There are currently 48 macro invertebrate and habitat monitoring stations and 8 fish monitoring stations throughout Charlotte and Mecklenburg County. The Mecklenburg County Bioassessment Laboratory is a State of North Carolina Certified Biological Lab (Certificate Number 036). It conducts all biological sampling for the MCWQP in accordance with its certification requirements.

Station Locations

Stations are established at publicly accessible, fixed locations, generally at bridge crossings corresponding to a FIM location. Locations and their latitude and longitude were originally identified using USGS topographic maps or ESRI GIS software. Stations are strategically located to monitor a specific watershed. The following criteria were considered during the site selection process:
- Sites must drain at least 6 square miles (unless a specific project site). There has been much speculation regarding the ability of 1st order streams to support diverse macro invertebrate and fish populations.

- Fairly uniform coverage of all watersheds. Sites were not focused up and downstream of treatment plants, nor were they place at restoration or BMP sites.

- Sites corresponding to NC-DENR compliance points were given greater importance.

- Single geographic features, such as the Charlotte Douglas Airport were not given greater importance.

A complete current site list and site map is provided in the Biological Monitoring SAP, which is included with this document as Appendix 2.

Many of the current stations have been active for over 20 years and the focus on long-term data is integral to identifying temporal patterns within a watershed and to gaining an understanding of the variability within each system. Consequently, requests from MCWQP staff for station establishment and/or discontinuation will be assessed on the value gained from a long-term perspective. Changes to station locations and sampling regimens may be made with sufficient reason, such as:

- Safety concerns of field staff
- Other changes to location accessibility
- The reason for sampling is no longer valid (i.e., a discontinued discharge)
- Emergence of new water quality concerns
- Resource constraints, particularly funding
- Redundancy

If any of these concerns arise, the QA/QC Officer, project officer and program manager will collectively decide if it is appropriate for a station to be discontinued, moved or added.

Indicators measured and sampling frequency

Samples are collected for macro invertebrates and fish. Field measurements are made for habitat assessment.

The biological monitoring SAP (Appendix 2) lists the frequency of measurement and the indicators measured.

Sampling and measurements

Biological samples are collected, handled and analyzed in accordance with the Biological Laboratory Certification requirements.

B2. Sampling Methods

Samples and measurements are to be taken in accordance with all SOPs (Appendix 3). Any irregularities or problems encountered by field staff should be communicated to the QA/QC
Officer, either verbally or via email, who will assess the situation, consult with other project personnel if needed, and recommend a course of action for resolution.

The SAPs (Appendix 2) identify sampling methods to be used for each monitoring program. The SOPs (Appendix 3) describe specific sampling and measurement techniques. Table B2.1 displays the types of samples and measurements collected for each monitoring program.

Table B2.1: Sample Collection Matrix

<table>
<thead>
<tr>
<th>Monitoring Program</th>
<th>Grab Samples</th>
<th>ISCO Samples</th>
<th>Field mmts</th>
<th>Fish & Bug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Interval Monitoring Program</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteriological Monitoring Program (Including 5/30 Monitoring)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-Stream Storm Water Monitoring Program</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Request/Emergency Response/Follow-up Monitoring Program</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMDL Stream Walk Monitoring Program</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMP Monitoring Program</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lake Monitoring Program</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Facility Monitoring Program</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Continuous Monitoring and Automated Notification Network</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goose Creek Recovery Program Monitoring</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological Monitoring</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B3. Sample Handling and Custody

All samples are to be handled by field staff in accordance with the applicable SAPs (Appendix 2) and SOPs (Appendix 3).

Sample preservation

Chemical preservation of water samples occurs instantaneously, in that MCWQP utilizes pre-preserved sample collection containers for all direct-grab surface water samples. Samples should then be placed in coolers with ice. The chemical preservatives utilized for each sample are listed in Table XX. Biological samples are preserved according to their approved SOP.

Sample submission forms

Sample submission forms (also known as chain of custody forms or COCs) are developed by the QA/QC Officer for all monitoring programs with the exception of the Biological Monitoring Program. The biological monitoring program follows the sample submission protocol outlined in their approved SOP. Each sheet corresponds to one monitoring event for one monitoring program (samples collected for multiple monitoring programs must be submitted to the laboratory under separate forms).

Examples of COCs for each monitoring program are provided in the SAP (Appendix 2) for the program. Typically, they will include the following information:

- Sample collectors initials
- Date and time of sample collection
- Depth (for lake samples)
- Notes
Field data is recorded on the field data sheets for the monitoring program. Example field data sheets are provided in the SAP (Appendix 2) for the program.

Sample bottle labels

Sample bottle labels for each program are provided in the SAP (Appendix 2) for the program. They should be filled out using waterproof ink or be pre-printed with the equivalent information. The bottle labels are printed from the special printer in the tech area on water proof, self-adhesive stock. Bottles labels should be affixed to the sample containers prior to departure for the field.

Sample Transport

Immediately after sampling, labeling, and chemical preservation, samples are placed in coolers on ice along with a “super” (trip, field, equipment) blank. Coolers are then hand delivered by field staff to the CMU Laboratory for check-in and subsequent analysis.

Laboratory

Once samples are checked into the CMU Laboratory, laboratory staff handles the samples in accordance with the procedures outlined in their laboratory certification. Samples submitted by field staff that are either out of hold time or fail the check-in temperature test may be rejected by the CMU Laboratory.

B4. Analytical Methods

Field measurements

Refer to the YSI Multiprobe Calibration and Field Data Collection SOP (Appendix 3) or appropriate YSI manual for field measurement analytical methods.

Lab analyses

Samples are submitted for analysis to the CMU Laboratory in Charlotte, NC. Results should be reported to the QA/QC Officer within 30 days of sample submission.

A summary of methods and PQLs (the Laboratory Section’s minimum reporting limit) are listed below in Table B4.1.

| Table B4.1: Analytical method references and lower Reporting Levels (RLs) |
B5. Quality Control

The Mecklenburg County Water Quality Program implements a comprehensive Quality Control (QC) program designed to monitor the integrity of both field measurements and laboratory samples. The program consists primarily of blanks, but also equipment blanks and field checks of know standards to ensure that all field data and samples collected are of the highest quality.

A majority of the routine monitoring run blanks (i.e. direct surface water grab samples) are considered by MCWQP to be “super-blanks”, or high-level scoping blanks that cover the practical extent of our sampling efforts. These blanks encompass error introduced from a number of common sources; including reagent water (or buffer solution for bacteriological parameters), pre-preserved sample containers, field methods and cooler / trip blanks. In the event that a parameter “hit” is observed in a super-blank, additional investigations must be initiated in order to determine the source of the contamination. This will result in additional work and consequently additional expense when contamination is discovered. Over a period of years, however MCWQP has determined that contamination problems of this nature are almost non-existent.

Any combination of the following traditional blanks and any other means deemed necessary to identify a source of sample contamination may be employed at any time.

- Bottle blank
- Field blank
- Reagent blank
- Sample container blank
- Transport, storage (cooler)

<table>
<thead>
<tr>
<th>Analyte</th>
<th>RL</th>
<th>Units</th>
<th>Reference</th>
<th>Samp Vol</th>
<th>Hold Time</th>
<th>Preservative</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALKALINITY</td>
<td>3.00</td>
<td>mg/L</td>
<td>SM 2320-B</td>
<td>100</td>
<td>14</td>
<td>None</td>
</tr>
<tr>
<td>AMMONIA-NITROGEN</td>
<td>0.10</td>
<td>mg/L</td>
<td>SM 4500-NH3H</td>
<td>30</td>
<td>28</td>
<td>H2SO4</td>
</tr>
<tr>
<td>CHLOROPHYLL A</td>
<td>1.00</td>
<td>ug/L</td>
<td>SM 10200</td>
<td>250</td>
<td>14 days</td>
<td>None</td>
</tr>
<tr>
<td>CHROMIUM</td>
<td>5.00</td>
<td>ug/L</td>
<td>EPA 200.8</td>
<td>*500</td>
<td>180</td>
<td>HNO3</td>
</tr>
<tr>
<td>COPPER</td>
<td>2.00</td>
<td>ug/L</td>
<td>EPA 200.8</td>
<td>*500</td>
<td>180</td>
<td>HNO3</td>
</tr>
<tr>
<td>E. COLI</td>
<td>1.00</td>
<td>MPN/100 ml</td>
<td>SM 9223-B</td>
<td>125</td>
<td>0.25</td>
<td>Na2S2O3</td>
</tr>
<tr>
<td>FECAL COLIFORM</td>
<td>1.00</td>
<td>CFU/100 ml</td>
<td>SM 9222-D</td>
<td>125</td>
<td>0.25</td>
<td>Na2S2O3</td>
</tr>
<tr>
<td>LEAD</td>
<td>3.00</td>
<td>ug/L</td>
<td>EPA 200.8</td>
<td>*500</td>
<td>180</td>
<td>HNO3</td>
</tr>
<tr>
<td>MANGANESE</td>
<td>10.00</td>
<td>ug/L</td>
<td>EPA 200.8</td>
<td>*500</td>
<td>180</td>
<td>HNO3</td>
</tr>
<tr>
<td>MERCURY</td>
<td>0.20</td>
<td>ug/L</td>
<td>EPA 200.8</td>
<td>*500</td>
<td>180</td>
<td>HNO3</td>
</tr>
<tr>
<td>NITRATE/NITRITE</td>
<td>0.05</td>
<td>mg/L</td>
<td>EPA 353.2</td>
<td>30</td>
<td>28</td>
<td>H2SO4</td>
</tr>
<tr>
<td>ORTHO-PHOSPHATE</td>
<td>0.01</td>
<td>mg/L</td>
<td>SM 4500-PF</td>
<td>30</td>
<td>2</td>
<td>None</td>
</tr>
<tr>
<td>SUSPENDED SEDIMENT CONCENTRATION</td>
<td>2.00</td>
<td>mg/L</td>
<td>ASTM D3977-97</td>
<td>250</td>
<td>7</td>
<td>None</td>
</tr>
<tr>
<td>TOTAL KIELDAHL NITROGEN</td>
<td>0.25</td>
<td>mg/L</td>
<td>EPA 351.2</td>
<td>30</td>
<td>28</td>
<td>H2SO4</td>
</tr>
<tr>
<td>TOTAL PHOSPHORUS</td>
<td>0.01</td>
<td>mg/L</td>
<td>SM 4500-PF</td>
<td>30</td>
<td>28</td>
<td>H2SO4</td>
</tr>
<tr>
<td>TOTAL SOLIDS</td>
<td>5.00</td>
<td>mg/L</td>
<td>SM 2540-B</td>
<td>100</td>
<td>7</td>
<td>None</td>
</tr>
<tr>
<td>TOTAL SUSPENDED SOLIDS</td>
<td>1.00</td>
<td>mg/L</td>
<td>SM 2540-D</td>
<td>250</td>
<td>7</td>
<td>None</td>
</tr>
<tr>
<td>TURBIDITY</td>
<td>0.05</td>
<td>NTU</td>
<td>SM 2130-B</td>
<td>100</td>
<td>2</td>
<td>None</td>
</tr>
<tr>
<td>VOC</td>
<td>VAR</td>
<td>ug/L</td>
<td>EPA 8620</td>
<td>80</td>
<td>14</td>
<td>HCl</td>
</tr>
<tr>
<td>ZINC</td>
<td>10.00</td>
<td>ug/L</td>
<td>EPA 200.8</td>
<td>*500</td>
<td>180</td>
<td>HNO3</td>
</tr>
</tbody>
</table>

*500 ml = sufficient volume for all metals requested
p = Plastic
pS = Sterile Plastic
pO = Opaque Plastic
g = glass
- Equipment (ISCO) blank

In general, one super-blank is included with each routine sampling run. A sampling run generally consists of approximately 10 sites on average. ISCO automated sample collection containers are blanked at least annual to ensure the cleaning procedures are adequate.

The Charlotte-Mecklenburg Utilities Laboratory (CMU), contracted by MCWQP for all sample analysis, is a NC State Certified lab for water and wastewater sample analysis. CMU lab is certified as EPA NC00125. The CMU lab conducts thorough and complete quality control in accordance with EPA and State standards for Certified Laboratory Practices. The CMU lab routinely conducts the following:

- Matrix spike
- Matrix spike replicate
- Analysis matrix spike
- Surrogate spike
- Analytical (preparation + analysis) bias
- Analytical bias and precision
- Instrument bias
- Analytical bias
- Zero check
- Span check
- Mid-range check
- Calibration drift and memory effect
- Calibration drift and memory effect
- Calibration drift and memory effect
- Replicates, splits, etc.
- Field co-located samples
- Field replicates
- Field splits
- Laboratory splits
- Laboratory replicates
- Analysis replicates
- Sampling + measurement precision
- Precision of all steps after acquisition
- Shipping + inter-laboratory precision
- Inter-laboratory precision
- Analytical precision
- Instrument precision

Annually, MCWP reports all instances of Quality Control violations. All violations are investigated and corrective actions are implemented wherever possible to eliminate additional sources of contamination.

B6. Instrument/Equipment Testing, Inspection, and Maintenance

Field Equipment

All field staff are responsible for regular cleaning, inspection, and maintenance of equipment they use for sampling activities. All equipment should be visually inspected daily for damage or dirt,
and repaired or cleaned if needed before use. If meters are stored for long periods (> 1 week) without being used, it is recommended that they be calibrated and inspected at least weekly to keep them in good working order. Other required maintenance on field meters is conducted in accordance with the MCWQP Field Parameter Laboratory certification.

Laboratory analytical equipment

Laboratory analytical equipment is maintained in accordance with CMU Laboratory’s Analytical Laboratory Certification requirements.

B7. Instrument Calibration and Frequency

Field meters

All field meters are to be inspected and calibrated at a minimum at the beginning and end of each day and checked at the end of each day they are used (Note: field meters are not re-calibrated at the end of use, rather they are checked). Field staff should record calibration information on the appropriate form (located in the meter calibration area of the tech room). Calibration and documentation shall occur in accordance with the YSI Multiprobe Calibration and Field Data Collection SOP (Appendix 3).

Meters should also be checked against standards periodically throughout the day and recalibrated if needed if any of the following occur:

- Physical shock to meter;
- DO membrane is touched, fouled, or dries out;
- Unusual (high or low for the particular site) or erratic readings, or excessive drift;
- Extreme readings (e.g., extremely acidic or basic pH; D.O. saturation >120%);
- Measurements are outside of the range for which the meter was calibrated.

Laboratory instrument calibration

CMU laboratory instrument calibration shall occur in accordance with their analytical laboratory certification.

B8. Inspection/Acceptance Requirements for Supplies and Consumables

The CMU laboratory performs quality assurance of sample bottles, reagents, and chemical preservatives that are provided to field staff. Containers that are purchased as pre-cleaned should be certified by the manufacturer or checked to ensure that the parameters tested are below the published reporting limits. Containers should be stored in a manner that does not leave them susceptible to contamination by dust or other particulates and should remain capped until use. Any containers that show evidence of contamination should be discarded. Certificates for glass containers certified by the manufacturer should be kept on file by the CMU Laboratory.

Field staff shall inspect all bottles before use. Any bottles that are visibly dirty or those with lids that have come off during storage should be discarded.

Certificates of purity for all preservatives obtained from an outside source should be provided when purchased, and these certificates kept on file by the CMU Laboratory. Any preservatives
that show signs of contamination, such as discoloration or the presence of debris or other solids, should not be used and should be discarded. A summary of inspections to be performed by field staff is presented in Table B8.1.

<table>
<thead>
<tr>
<th>Item</th>
<th>Acceptance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Bottles</td>
<td>- No visible dirt, debris or other contaminants</td>
</tr>
<tr>
<td>pH standards</td>
<td>- No visible discoloration, debris or other contaminants</td>
</tr>
<tr>
<td>Conductivity Standards</td>
<td>- No visible discoloration, debris or other contaminants</td>
</tr>
<tr>
<td>Acid preservatives</td>
<td>- No visible debris or other contaminants</td>
</tr>
<tr>
<td>Distilled or deionized water</td>
<td>- No visible discoloration, debris or other contaminants</td>
</tr>
</tbody>
</table>

B9. Non-Direct Measurements

All data will be generated through program field and activities and consequent lab analyses, with two exceptions:

- Precipitation: Data are to be obtained from the USGS database through their website at http://nc.water.usgs.gov/char/. Currently there are data available from more than 50 sites in and around Charlotte and Mecklenburg County. Data should be obtained from the nearest rain gauge. Figure B9.1 shows the distribution of rain gauges in and around Charlotte and Mecklenburg County.

- USGS Flow data: Charlotte-Mecklenburg Storm Water Services has a cooperative agreement to help the US Geological Survey fund approximately 54 stream gages for the measurement of stream flow in and around Charlotte and Mecklenburg County. Data should be obtained from the stream gauge at the site at http://nc.water.usgs.gov/char/. Figure B9.2 shows the distribution of stream gauges in and around Charlotte and Mecklenburg County.
Figure B9.1: USGS Rain gauge network in and around Mecklenburg County
B10. Data Management

MCWQP produces approximately 17,000 analytical data points annually. In addition there are numerous Macro invertebrate assessments, fish counts, and habitat scores, as well as approximately 1.7×10^6 remote water quality data points produced every year. Due to the quantity and complexity of information being produced, organized data management is critical. An overview of the data flow is given in Figure B10.1.
Analytical results are submitted to the Data Manager electronically and in hard copy format from the CMU laboratory. Occasionally samples are subcontracted by the CMU lab to outside sources. All outside sub-contract labs must be State Certified and provide data to MCWQP in both electronic and hard copy formats.

Field data is submitted in hard-copy on formatted field data sheets. Hard copy formatted original field data must be hand-key entered into electronic format for use and storage. Remote data from CMANN automated water quality sondes and USGS flow and precipitation data are routinely downloaded from the respective internet servers in .csv file format.

Individual data points are uniquely identified using a combination of Program Element Code, Location Code, Location Description, Date/Time Collected and analyte. All data received are reviewed by the Data Manager / QC Officer for completeness, data entry errors, unlikely or impossible values, etc., prior to approval.

All approved data is then uploaded into a secured SQL database utilizing a custom, web-interface application, the Water Quality Data Repository (WQDR). Approved data is available to MCWQP staff through the Environmental Data Management System (EDMS), or through Open Database Connectivity (ODBC) using Microsoft Access.
SECTION C: ASSESSMENT AND OVERSIGHT
C1. Assessments and Response Actions

The QA/QC Officer acts as the liaison between field staff, the CMU Laboratory, program management and data end users. Issues with any aspect of the program noted by any of these should report them as soon as possible to the QA/QC Officer, who will assess the issue, consult with other parties as needed, and determine the course of action to be taken.

The QA/QC Officer will conduct field audits of each monitoring program at least annually. The main purpose of these audits is to ensure that field staff are performing activities in accordance with current SOPs and to determine if there are any other issues that need to be addressed. Concerns or irregularities noticed by the QA/QC Officer will be discussed with the field staff and project officer. If significant issues arise, the QA/QC Officer will notify the Program Manager, and the field staff member’s direct supervisor and issue a corrective action report. If the issue continues after the notification, the QA/QC officer will prepare a memorandum, describing the issue and providing recommendations for correcting the issue. The field staff member’s direct supervisor is responsible for ensuring that these significant issues are resolved.

C2. Reports to Management

The QA/QC Officer reports significant issues to the Program Manager verbally and/or via written updates. The QA/QC Officer also maintains a database of the sampling schedule, which includes an accounting of all samples collected, samples to be collected and any issues with samples collected to date. The QA/QC Officer delivers periodic updates to the supervisors, project officers and field staff on the status and schedule of the monitoring program. These updates occur at monthly staff meetings and monthly supervisor meetings.
SECTION D: DATA VALIDATION AND USABILITY
D1. Data Review, Verification and Validation

Data verification and validation occurs at every step of water quality data generation and handling. Field staff, laboratory staff, project officers and the QA/QC Officer are each responsible for verifying that all records and results they produce or handle are completely and correctly recorded, transcribed, and transmitted. Each staff member and project officer is also responsible for ensuring that all activities performed (sampling, measurements, and analyses) comply with all requirements outlined in the SAPs and SOPs pertinent to their project. The QA/QC Officer is responsible for final verification, validation and acceptance of all results. One exception is the CMAN program where the CMANN project officer reviews all measurements and performs final verification, validation and acceptance of results.

D2. Validation and Verification Methods

Field staff

Field staff will visually check the following items as produced to ensure that they are complete and correct:

- Sample bottle labels
- COCs
- Field data sheets

Laboratory staff

CMU laboratory staff will perform data validation and verification in accordance with their Analytical Laboratory Certification requirements.

If circumstances arise where samples or analysis do not meet laboratory criteria, the Laboratory Section will report this using a text comment field attached to the result record.

QA/QC officer

The MCWQP QA/QC Officer (QCO) is responsible for data review, validation, and verification. These duties are conducted on an ongoing basis. As received, the QCO reviews hard copy lab reports and electronic data transfers from the CMU Lab, remote databases (CMANN) and from outside vendors (subcontracted labs). The QCO also reviews data that has been hand-key entered by MCWQP staff.

The QCO consults with the CMU Laboratory Manager and / or designated staff for clarification or corrections as needed. When errors or omissions are discovered or suspected, a focused investigation will be conducted. In the event that errors are discovered in electronic data transfers from CMU or CMANN, the QCO will contact the CMU Lab Manager, the CMU QC Lab Coordinator, or the designated MCWQP staff for resolution. In the event that errors are discovered in hand-key entry data, the QCO will consult hard-copy field data sheets and / or staff to resolve any identified issues. Final decisions on qualified or rejected data are the responsibility of the QCO.

Results in question that are found to be in error when compared to the original documentation will be corrected by the QCO. “Impossible” values (e.g., pH of 19) will be rejected or corrected if a value can be determined from original documentation. “Unusual” values that are confirmed by original documentation are left intact and unqualified.
Validated and verified data are uploaded to the Water Quality Data Repository by the QCO.

Data end-users

The individuals that request data from the MCWQP may note odd or possibly incorrect values. These questionable data should be brought to the attention of the QA/QC officer for focused verification. For most data, original lab reports and field data submissions are on file at the Hal Marshall Center (700 North Tryon Street, Charlotte, NC 28202). These will be consulted to determine if correction or deletion of any records in WQDR is required, using the same criteria as described above for data reviews. If original documentation for data collected is not available, confirmation and/or correction are not possible. This historic data will remain unchanged in the main warehouse and it is up to each data user to determine the proper handling of these results.

D3. Reconciliation with User Requirements

Section 7.0 – Performance Acceptance Criteria of each individual SAPs (Appendix 2) for each monitoring project outlines the acceptance criteria for each project.

References

YSI Environmental User’s Manual. YSI EcoNet Remote Monitoring and Control Platform, Revision B. Marion, MA: YSI Incorporated